Publication:
Segment-level road obstacle detection using visual foundation model priors and likelihood ratios

dc.conference.dateFEB 26-28, 2025
dc.conference.locationPorto
dc.contributor.coauthorNowzad, Azarm
dc.contributor.coauthorGottschalk, Hanno
dc.contributor.coauthorShoeb, Youssef
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorFaculty Member, Nayal, Nazir
dc.contributor.kuauthorFaculty Member, Güney, Fatma
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:34:19Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractDetecting road obstacles is essential for autonomous vehicles to navigate dynamic and complex traffic environments safely. Current road obstacle detection methods typically assign a score to each pixel and apply a threshold to generate final predictions. However, selecting an appropriate threshold is challenging, and the per-pixel classification approach often leads to fragmented predictions with numerous false positives. In this work, we propose a novel method that leverages segment-level features from visual foundation models and likelihood ratios to predict road obstacles directly. By focusing on segments rather than individual pixels, our approach enhances detection accuracy, reduces false positives, and offers increased robustness to scene variability. We benchmark our approach against existing methods on the RoadObstacle and LostAndFound datasets, achieving state-of-the-art performance without needing a predefined threshold.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKUIS; German Federal Ministry for Economic Affairs and Climate Action; European Commission, EC; European Research Council, ERC, (101116486); European Research Council, ERC
dc.description.versionPublished Version
dc.identifier.doi10.5220/0013126700003912
dc.identifier.embargoNo
dc.identifier.endpage315
dc.identifier.filenameinventorynoIR06238
dc.identifier.issn2184-5921
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105001817769
dc.identifier.startpage306
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29364
dc.identifier.urihttps://doi.org/10.5220/0013126700003912
dc.identifier.volume2
dc.keywordsApplications of foundational models
dc.keywordsLikelihood ratio
dc.keywordsRoad obstacle detection
dc.language.isoeng
dc.publisherScience and Technology Publications, Lda
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofProceedings of the international joint conference on computer vision, imaging and computer graphics theory and applications
dc.relation.ispartof20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2025
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleSegment-level road obstacle detection using visual foundation model priors and likelihood ratios
dc.typeConference Proceeding
dspace.entity.typePublication
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06238.pdf
Size:
48.37 MB
Format:
Adobe Portable Document Format