Publication:
Optimal estimation of physical properties of the products of an atmospheric distillation column using support vector regression

dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorSerfidan, Ahmet Can
dc.contributor.kuauthorUzman, Fırat
dc.contributor.kuauthorTürkay, Metin
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid24956
dc.date.accessioned2024-11-09T22:50:21Z
dc.date.issued2020
dc.description.abstractAtmospheric distillation column is one of the most important units in an oil refinery where crude oil is fractioned into its more valuable constituents. Almost all of the state-of-the art online equipment has a time lag to complete the physical property analysis in real time due to complexity of the analyses. Therefore, estimation of the physical properties from online plant data with a soft sensor has significant benefits. In this paper, we estimate the physical properties of the hydrocarbon products of an atmospheric distillation column by support vector regression using Linear, Polynomial and Gaussian Radial Basis Function kernels and SVR parameters are optimized by using a variety of algorithms including genetic algorithm, grid search and non-linear programming. The optimization-based data analytics approach is shown to produce superior results compared to linear regression, the mean testing error of estimation is improved by 5% with SVR 4.01 degrees C to 3.8 degrees C.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume134
dc.identifier.doi10.1016/j.compchemeng.2019.106711
dc.identifier.eissn1873-4375
dc.identifier.issn0098-1354
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85077917760
dc.identifier.urihttp://dx.doi.org/10.1016/j.compchemeng.2019.106711
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6660
dc.identifier.wos517756500029
dc.keywordsData analytics
dc.keywordsOptimization
dc.keywordsParameter estimation
dc.keywordsSupport vector regression
dc.keywordsAtmospheric distillation
dc.languageEnglish
dc.publisherPergamon-Elsevier Science Ltd
dc.sourceComputers and Chemical Engineering
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectChemical engineering
dc.titleOptimal estimation of physical properties of the products of an atmospheric distillation column using support vector regression
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-3806-7505
local.contributor.authoridN/A
local.contributor.authorid0000-0003-4769-6714
local.contributor.kuauthorSerfidan, Ahmet Can
local.contributor.kuauthorUzman, Fırat
local.contributor.kuauthorTürkay, Metin
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files