Publication:
Carbon nanotube coordinate prediction with deep learning

dc.contributor.kuauthorŞahin, Egemen
dc.contributor.kuauthorSaul, Can Jozef
dc.date.accessioned2024-11-09T23:14:40Z
dc.date.issued2019
dc.description.abstractThe development of carbon nanotube technology has provided a great advantage in applications of many fields including nanotechnology and materials science due to the exquisite mechanical, chemical, thermal and electrical properties of carbon nanotubes. However, due to their size, the scale at which the physical phenomena of carbon nanotubes are apparent is too small to do physical experiments, there is a need for certain computational methods like molecular dynamics simulations. In this present study, we propose a deep learning methodology, alongside a custom data preprocessing method, for precisely determining carbon nanotubes’ coordinates. We experimented with various topologies of neural networks and acquired a top result of 81.34%. Our findings and computation method surpasses the previous work on this field, in terms accuracy and computational time.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/CCOMS.2019.8821653
dc.identifier.isbn9781-7281-1322-7
dc.identifier.scopus2-s2.0-85072970255
dc.identifier.urihttps://doi.org/10.1109/CCOMS.2019.8821653
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10185
dc.identifier.wos539154300009
dc.keywordsArtificial neural network
dc.keywordsCarbon nanotubes
dc.keywordsDeep learning
dc.keywordsComputational chemistry
dc.keywordsDeep neural networks
dc.keywordsMolecular dynamics
dc.keywordsNeural networks
dc.keywordsCarbon nanotube technology
dc.keywordsComputation methods
dc.keywordsComputational time
dc.keywordsData preprocessing
dc.keywordsMolecular dynamics simulations
dc.keywordsPhysical experiments
dc.keywordsPhysical phenomena
dc.keywordsThermal and electrical properties
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof2019 IEEE 4th International Conference on Computer and Communication Systems, ICCCS 2019
dc.subjectComputer Science
dc.titleCarbon nanotube coordinate prediction with deep learning
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorSaul, Can Jozef
local.contributor.kuauthorŞahin, Egemen

Files