Publication:
Getting the most out of macroeconomic information for predicting excess stock returns

dc.contributor.coauthorvan Dijk, Dick
dc.contributor.departmentDepartment of Economics
dc.contributor.kuauthorÇakmaklı, Cem
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Economics
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.yokid107818
dc.date.accessioned2024-11-09T23:00:50Z
dc.date.issued2016
dc.description.abstractThis paper documents the fact that the factors extracted from a large set of macroeconomic variables contain information that can be useful for predicting monthly US excess stock returns over the period 1975-2014. Factor-augmented predictive regression models improve upon benchmark models that include only valuation ratios and interest rate related variables, and possibly individual macro variables, as well as the historical average excess return. The improvements in out-of-sample forecast accuracy are significant, both statistically and economically. The factor-augmented predictive regressions have superior market timing abilities, such that a mean variance investor would be willing to pay an annual performance fee of several hundreds of basis points to switch from the predictions offered by the benchmark models to those of the factor-augmented models. One important reason for the superior performance of the factor-augmented predictive regressions is the stability of their forecast accuracy, whereas the benchmark models suffer from a forecast breakdown during the 1990s. (C) 2016 Published by Elsevier B.V. on behalf of International Institute of Forecasters.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue3
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume32
dc.identifier.doi10.1016/j.ijforecast.2015.10.001
dc.identifier.eissn1872-8200
dc.identifier.issn0169-2070
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-84960324396
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijforecast.2015.10.001
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8132
dc.identifier.wos378470600005
dc.keywordsReturn predictability
dc.keywordsModel uncertainty
dc.keywordsDynamic factor models
dc.keywordsVariable selection economic value
dc.keywordsVolatility
dc.keywordsPredictability
dc.keywordsSelection
dc.keywordsConsumption
dc.keywordsForecasts
dc.keywordsPremium
dc.keywordsModels
dc.keywordsSample
dc.languageEnglish
dc.publisherElsevier
dc.sourceInternational Journal of Forecasting
dc.subjectEconomics
dc.subjectManagement
dc.titleGetting the most out of macroeconomic information for predicting excess stock returns
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-4688-2788
local.contributor.kuauthorÇakmaklı, Cem
relation.isOrgUnitOfPublication7ad2a3bb-d8d9-4cbd-a6a3-3ca4b30b40c3
relation.isOrgUnitOfPublication.latestForDiscovery7ad2a3bb-d8d9-4cbd-a6a3-3ca4b30b40c3

Files