Publication:
Extending the Gaussian network model: integrating local, allosteric, and structural factors for improved residue-residue correlation analysis

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorErman, Burak
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:21:16Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractThe Gaussian network model (GNM) has been successful in explaining protein dynamics by modeling proteins as elastic networks of alpha carbons connected by harmonic springs. However, its uniform interaction assumption and neglect of higher-order correlations limit its accuracy in predicting experimental B-factors and residue cross-correlations critical for understanding allostery and information transfer. This study introduces an information-theoretic enhancement to the GNM, incorporating mutual information-based corrections to the Kirchhoff matrix to account for multi-body interactions and contextual residue dynamics. By iteratively optimizing B-factor predictions and applying a Monte Carlo-driven maximum entropy approach to refine covariances, our method achieves significant improvements, reducing RMSDs between predicted and experimental B-factors by 26%-46% across nine representative proteins. The model contextualizes residue assignments based on local density, solvent exposure, and allosteric roles, showing complex dynamic patterns beyond simple neighbor counts. Enhanced predictions of mutual information and entropy perturbations in proteins like KRAS improve the identification of spanning trees containing key residues, which may correspond to allosteric communication pathways. This evolvable framework, capable of incorporating additional effects and utilizing contextual residue assignments, enables precise studies of mutation effects on protein dynamics, with improved cross-correlation predictions potentially increasing accuracy in drug design and function prediction.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccesshybrid
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1088/1478-3975/ae1dc1
dc.identifier.eissn1478-3975
dc.identifier.embargoNo
dc.identifier.issn1478-3967
dc.identifier.issue6
dc.identifier.pubmed41213266
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-105022421782
dc.identifier.urihttps://doi.org/10.1088/1478-3975/ae1dc1
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31574
dc.identifier.volume22
dc.identifier.wos001619320000001
dc.keywordsMutual information
dc.keywordsSpanning tree
dc.keywordsEntropy maximization
dc.keywordsAllostery
dc.keywordsInformation transfer
dc.keywordsEntropy transfer
dc.keywordsKRAS
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofPhysical Biology
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectBiochemistry and molecular biology
dc.subjectBiophysics
dc.titleExtending the Gaussian network model: integrating local, allosteric, and structural factors for improved residue-residue correlation analysis
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameErman
person.givenNameBurak
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files