Publication:
SLAMP: stochastic latent appearance and motion prediction

dc.contributor.coauthorErdem, Erkut
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.kuauthorAkan, Adil Kaan
dc.contributor.kuauthorErdem, Aykut
dc.contributor.kuauthorGüney, Fatma
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2024-11-09T12:39:40Z
dc.date.issued2021
dc.description.abstractMotion is an important cue for video prediction and often utilized by separating video content into static and dynamic components. Most of the previous work utilizing motion is deterministic but there are stochastic methods that can model the inherent uncertainty of the future. Existing stochastic models either do not reason about motion explicitly or make limiting assumptions about the static part. In this paper, we reason about appearance and motion in the video stochastically by predicting the future based on the motion history. Explicit reasoning about motion without history already reaches the performance of current stochastic models. The motion history further improves the results by allowing to predict consistent dynamics several frames into the future. Our model performs comparably to the state-of-the-art models on the generic video prediction datasets, however, significantly outperforms them on two challenging real-world autonomous driving datasets with complex motion and dynamic background.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipKUIS AI Center fellowship
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorship2232 International Fellowship for Outstanding Researchers Programme
dc.description.sponsorshipTurkish Academy of Sciences GEBIP 2018
dc.description.sponsorshipTurkish Academy of Sciences BAGEP 2021.
dc.description.versionAuthor's final manuscript
dc.identifier.doi10.1109/ICCV48922.2021.01446
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03711
dc.identifier.isbn9781665428125
dc.identifier.issn1550-5499
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85127829828
dc.identifier.urihttps://doi.org/10.1109/ICCV48922.2021.01446
dc.identifier.wos798743204090
dc.keywordsComputer vision
dc.keywordsForecasting
dc.keywordsStochastic models
dc.keywordsStochastic systems
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantnoNA
dc.relation.ispartofProceedings of the IEEE International Conference on Computer Vision
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10569
dc.subjectComputer science
dc.subjectEngineering
dc.titleSLAMP: stochastic latent appearance and motion prediction
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorErdem, Aykut
local.contributor.kuauthorGüney, Fatma
local.contributor.kuauthorAkan, Adil Kaan
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1Research Center
local.publication.orgunit2KUIS AI (Koç University & İş Bank Artificial Intelligence Center)
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10569.pdf
Size:
10.79 MB
Format:
Adobe Portable Document Format