Publication:
SLAMP: stochastic latent appearance and motion prediction

dc.contributor.coauthorErdem, Erkut
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorErdem, Aykut
dc.contributor.kuauthorGüney, Fatma
dc.contributor.kuauthorAkan, Adil Kaan
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid20331
dc.contributor.yokid187939
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:39:40Z
dc.date.issued2021
dc.description.abstractMotion is an important cue for video prediction and often utilized by separating video content into static and dynamic components. Most of the previous work utilizing motion is deterministic but there are stochastic methods that can model the inherent uncertainty of the future. Existing stochastic models either do not reason about motion explicitly or make limiting assumptions about the static part. In this paper, we reason about appearance and motion in the video stochastically by predicting the future based on the motion history. Explicit reasoning about motion without history already reaches the performance of current stochastic models. The motion history further improves the results by allowing to predict consistent dynamics several frames into the future. Our model performs comparably to the state-of-the-art models on the generic video prediction datasets, however, significantly outperforms them on two challenging real-world autonomous driving datasets with complex motion and dynamic background.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipKUIS AI Center fellowship
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorship2232 International Fellowship for Outstanding Researchers Programme
dc.description.sponsorshipTurkish Academy of Sciences GEBIP 2018
dc.description.sponsorshipTurkish Academy of Sciences BAGEP 2021.
dc.description.versionAuthor's final manuscript
dc.formatpdf
dc.identifier.doi10.1109/ICCV48922.2021.01446
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03711
dc.identifier.isbn9781665428125
dc.identifier.issn1550-5499
dc.identifier.linkhttps://doi.org/10.1109/ICCV48922.2021.01446
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85127829828
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2120
dc.identifier.wos798743204090
dc.keywordsComputer vision
dc.keywordsForecasting
dc.keywordsStochastic models
dc.keywordsStochastic systems
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10569
dc.sourceProceedings of the IEEE International Conference on Computer Vision
dc.subjectComputer science
dc.subjectEngineering
dc.titleSLAMP: stochastic latent appearance and motion prediction
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-6280-8422
local.contributor.authorid0000-0002-0358-983X
local.contributor.authoridN/A
local.contributor.kuauthorErdem, Aykut
local.contributor.kuauthorGüney, Fatma
local.contributor.kuauthorAkan, Adil Kaan
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10569.pdf
Size:
10.79 MB
Format:
Adobe Portable Document Format