Publication:
Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever

dc.contributor.coauthorŞencan, İrfan
dc.contributor.coauthorTorunoğlu, Mehmet Ali
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorAk, Çiğdem
dc.contributor.kuauthorErgönül, Önder
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid237468
dc.date.accessioned2024-11-09T12:27:44Z
dc.date.issued2018
dc.description.abstractBackground: Infectious diseases are one of the primary healthcare problems worldwide, leading to millions of deaths annually. To develop effective control and prevention strategies, we need reliable computational tools to understand disease dynamics and to predict future cases. These computational tools can be used by policy makers to make more informed decisions. Methodology/Principal findings: In this study, we developed a computational framework based on Gaussian processes to perform spatiotemporal prediction of infectious diseases and exploited the special structure of similarity matrices in our formulation to obtain a very efficient implementation. We then tested our framework on the problem of modeling Crimean-Congo hemorrhagic fever cases between years 2004 and 2015 in Turkey. Conclusions/Significance: We showed that our Gaussian process formulation obtained better results than two frequently used standard machine learning algorithms (i.e., random forests and boosted regression trees) under temporal, spatial, and spatiotemporal prediction scenarios. These results showed that our framework has the potential to make an important contribution to public health policy makers.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue8
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTurkish Academy of Sciences (TÜBA) Young Outstanding Researcher Support Programme (GEBIP)
dc.description.sponsorshipScience Academy of Turkey (BAGEP
dc.description.sponsorshipThe Young Scientist Award Program)
dc.description.versionPublisher version
dc.description.volume12
dc.formatpdf
dc.identifier.doi10.1371/journal.pntd.0006737
dc.identifier.eissn1935-2735
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01451
dc.identifier.linkhttps://doi.org/10.1371/journal.pntd.0006737
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85054784697
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1771
dc.identifier.wos443381000058
dc.keywordsApproximation
dc.keywordsInference
dc.languageEnglish
dc.publisherPublic Library of Science
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8034
dc.sourcePlos Neglected Tropical Diseases
dc.subjectInfectious diseases
dc.subjectParasitology
dc.subjectTropical medicine
dc.titleSpatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0003-1935-9235
local.contributor.kuauthorAk, Çiğdem
local.contributor.kuauthorErgönül, Mehmet Önder
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8034.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format