An uncountable Moore-Schmidt theorem

dc.contributor.authorid0000-0002-1450-6569
dc.contributor.coauthorTao, Terence
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorJamneshan, Asgar
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid332404
dc.date.accessioned2025-01-19T10:31:50Z
dc.date.issued2023
dc.description.abstractWe prove an extension of the Moore-Schmidt theorem on the triviality of the first cohomology class of cocycles for the action of an arbitrary discrete group on an arbitrary measure space and for cocycles with values in an arbitrary compact Hausdorff abelian group. The proof relies on a 'conditional' Pontryagin duality for spaces of abstract measurable maps. © The Author(s), 2022. Published by Cambridge University Press.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue7
dc.description.openaccessAll Open Access; Green Open Access; Hybrid Gold Open Access
dc.description.publisherscopeInternational
dc.description.sponsorsA.J. was supported by DFG-research fellowship JA 2512/3-1. T.T. was supported by a Simons Investigator grant, the James and Carol Collins Chair, the Mathematical Analysis & Application Research Fund Endowment, and by NSF grant DMS-1764034.
dc.description.volume43
dc.identifier.doi10.1017/etds.2022.36
dc.identifier.eissn1469-4417
dc.identifier.issn1433857
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85162137036
dc.identifier.urihttps://doi.org/10.1017/etds.2022.36
dc.identifier.urihttps://hdl.handle.net/20.500.14288/26300
dc.identifier.wos793590700001
dc.keywordsErgodic theory
dc.keywordsMeasurable cocycles
dc.keywordsMeasure preserving systems
dc.languageen
dc.publisherCambridge University Press
dc.relation.grantnoJames and Carol Collins Chair; National Science Foundation, NSF, (DMS-1764034); Deutsche Forschungsgemeinschaft, DFG, (JA 2512/3-1)
dc.sourceErgodic Theory and Dynamical Systems
dc.subjectMathematics
dc.titleAn uncountable Moore-Schmidt theorem
dc.typeJournal Article

Files