A novel approach to quantify microsleep in drivers with obstructive sleep apnea by concurrent analysis of EEG patterns and driving attributes

Placeholder

Publication Date

2024

Advisor

Institution Author

Peker, Yüksel
Gürsoy, Beren Semiz
Çelik, Yeliz
Arbatlı, Semih
Minhas, Riaz

Co-Authors

Journal Title

Journal ISSN

Volume Title

Publisher:

IEEE-Inst Electrical Electronics Engineers Inc

Type

Journal Article
View PlumX Details

Abstract

Accurate quantification of microsleep (MS) in drivers is crucial for preventing real-time accidents. We propose one-to-one correlation between events of high-fidelity driving simulator (DS) and corresponding brain patterns, unlike previous studies focusing general impact of MS on driving performance. Fifty professional drivers with obstructive sleep apnea (OSA) participated in a 50-minute driving simulation, wearing six-channel Electroencephalography (EEG) electrodes. 970 out-of-road OOR (microsleep) events (wheel and boundary contact >= 1 s), and 1020 on-road OR (wakefulness) events (wheel and boundary disconnection >= 1 s), were recorded. Power spectrum density, computed using discrete wavelet transform, analyzed power in different frequency bands and theta/alpha ratios were calculated for each event. We classified OOR (microsleep) events with higher theta/alpha ratio compared to neighboring OR (wakefulness) episodes as true MS and those with lower ratio as false MS. Comparative analysis, focusing on frontal brain, matched 791 of 970 OOR (microsleep) events with true MS episodes, outperforming other brain regions, and suggested that some unmatched instances were due to driving performance, not sleepiness. Combining frontal channels F3 and F4 yielded increased sensitivity in detecting MS, achieving 83.7% combined mean identification rate (CMIR), surpassing individual channel's MIR, highlighting potential for further improvement with additional frontal channels. We quantified MS duration, with 95% of total episodes lasting between 1 to 15 seconds, and pioneered a robust correlation (r = 0.8913, p<0.001) between maximum drowsiness level and MS density. Validating simulator's signals with EEG patterns by establishing a direct correlation improves reliability of MS identification for assessing fitness-to-drive of OSA-afflicted adults.

Description

Subject

Computer science, Medical informatics

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note