Orthorectification of large datasets of multi-scale archival aerial imagery: a case study from Türkiye

dc.contributor.authoridN/A
dc.contributor.authorid0000-0002-4302-4788
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Archaeology and History of Art
dc.contributor.kuauthorHong, Xin
dc.contributor.kuauthorRoosevelt, Christopher Havemeyer
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.researchcenterKoç University Research Center for Anatolian Civilizations (ANAMED) / Anadolu Medeniyetleri Araştırma Merkezi (ANAMED)
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokidN/A
dc.contributor.yokid235115
dc.date.accessioned2025-01-19T10:31:30Z
dc.date.issued2023
dc.description.abstractRecent research has unveiled the immense potential of orthorectifying small datasets of scanned historical aerial imagery for multi-temporal environmental and social science research on limited areas such as single landforms, sites, and cities. This article takes this approach further and presents methods that aim for accurate yet efficient orthorectification of large datasets of archival aerial imagery for landscape and regional-scale research. The study draws from a colossal archive in Turkiye, working with over 850 scanned historical aerial photographs at photographic scales of 1:60,000 and 1:30,000 to showcase a workflow that combines structure-from-motion (SfM) and auto-registration techniques to rectify and mosaic the images. This endeavor covers an area spanning 3,600 km(2), and produces a 1:60,000 scale orthomosaic and a 1:30,000 rectified mosaic with spatial resolutions of 1.4 m and 0.8 m, respectively. The Root Mean Square Error (RMSE) values reflect sensitivity to accuracy-efficiency trade-offs of the approach. The results thus demonstrate the potential of these combined methods for producing large coverage orthomosaics for regional-scale analyses, while underscoring the challenges that future research must address.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.publisherscopeInternational
dc.description.sponsorsThis work was supported by the Vehbi Koc Foundation, Koc University, and the Research Center for Anatolian Civilizations (ANAMED), Koc University.
dc.description.volume7
dc.identifier.doi10.1007/s41651-023-00153-1
dc.identifier.eissn2509-8829
dc.identifier.issn2509-8810
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85167503314
dc.identifier.urihttps://doi.org/10.1007/s41651-023-00153-1
dc.identifier.urihttps://hdl.handle.net/20.500.14288/26256
dc.identifier.wos1044413900001
dc.keywordsHistorical aerial imagery
dc.keywordsOrthorectification
dc.keywordsPhotogrammetry
dc.keywordsStructure-from-motion (SfM)
dc.keywordsAuto-registration
dc.keywordsDigital archive
dc.keywordsRemote Sensing
dc.languageen
dc.publisherSpringernature
dc.relation.grantnoVehbi Koc Foundation, Koc University; Research Center for Anatolian Civilizations (ANAMED), Koc University
dc.sourceJournal of Geovisualization and Spatial Analysis
dc.subjectEnvironmental sciences
dc.subjectGeography
dc.titleOrthorectification of large datasets of multi-scale archival aerial imagery: a case study from Türkiye
dc.typeJournal Article

Files