Publication:
A characterization of quasipositive two-bridge knots

dc.contributor.authorid0000-0002-9758-1045
dc.contributor.coauthorOrevkov, Stepan
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÖzbağcı, Burak
dc.contributor.kuauthorÖzbağcı, Burak
dc.contributor.kuprofileFaculty Member
dc.contributor.yokid29746
dc.date.accessioned2025-01-19T10:33:26Z
dc.date.issued2024
dc.description.abstractWe prove a simple necessary and sufficient condition for a two-bridge knot K(p,q) to be quasipositive, based on the continued fraction expansion of p/q. As an application, coupled with some classification results in contact and symplectic topology, we give a new proof of the fact that smoothly slice two-bridge knots are non-quasipositive. Another proof of this fact using methods within the scope of knot theory is presented in Appendix A, by Stepan Orevkov.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessGreen Submitted
dc.description.publisherscopeInternational
dc.description.volume35
dc.identifier.doi10.1142/S0129167X24500150
dc.identifier.eissn1793-6519
dc.identifier.issn0129-167X
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85186693136
dc.identifier.urihttps://doi.org/10.1142/S0129167X24500150
dc.identifier.urihttps://hdl.handle.net/20.500.14288/26594
dc.identifier.wos1178068000001
dc.keywordsTwo-bridge knot
dc.keywordsQuasi positive knot
dc.keywordsStrongly quasi positive knot
dc.keywordsSlice knot
dc.keywordsAlternating link
dc.keywordsMontesinos link
dc.keywordsContact structure
dc.keywordsSymplectic structure
dc.languageen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.sourceInternational Journal of Mathematics
dc.subjectMathematics
dc.titleA characterization of quasipositive two-bridge knots
dc.typeJournal Article
dspace.entity.typePublication
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04821.pdf
Size:
177.78 KB
Format:
Adobe Portable Document Format