Enhancing thermoelectric and mechanical properties of P-Type (Bi, Sb)2Te3 through rickardite mineral (Cu2.9Te2) incorporation

dc.contributor.authorid0000-0003-1164-1973
dc.contributor.authorid0000-0001-9098-2869
dc.contributor.authoridN/A
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.kuauthorAydemir, Umut
dc.contributor.kuauthorYahyaoğlu, Müjde
dc.contributor.kuauthorSağlık, Kıvanç
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid58403
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2025-01-19T10:34:02Z
dc.date.issued2023
dc.description.abstractBi2Te3-based alloys are widely utilized in Peltier coolers owing to their highest thermoelectric performance at near-room-temperatures. However, their peak dimensionless thermo-electric figure of merit, zT, is limited to a narrow temperature window due to minority carrier excitation emerging upon heating at around 400 K. Here, we show how this issue can be overcome by incorporating a synthetic rickardite mineral, Cu3-xTe2, in p-type (Bi, Sb)2Te3. The significant enhancement of the electronic and thermal properties could be achieved due to small Cu incorporation into the crystal structure of (Bi, Sb)2Te3 and homogeneous precipitation of Cu3-xTe2 at the grain boundaries. This leads to a high average zT value (zTave) of 1.22 between 350 and 500 K for two compositions, Bi0.5Sb1.5Te3 (BST-5) and Bi0.3Sb1.7Te3 (BST-3), with peak zT values of 1.32 at 467 K and 1.30 at 400 K, respectively. These high zT values result in a considerably high maximum device ZT of ca. 1.15 and a theoretical efficiency of up to 7% between 325 and 525 K. Additionally, room-temperature micro-hardness is substantially improved, which is desirable for constructing reliable and durable thermoelectric modules.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue9
dc.description.openaccesshybrid
dc.description.publisherscopeInternational
dc.description.sponsorsFunding This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with project number 218M335. U.A. and C.C. acknowledge the financial support of the French Agence Nationale de la Recherche (ANR) , through the PRCI project DENZIP (ANR-18-CE05-0042) .
dc.description.volume35
dc.identifier.doi10.1021/acs.chemmater.3c00229
dc.identifier.eissn1520-5002
dc.identifier.issn0897-4756
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85156209168
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.3c00229
dc.identifier.urihttps://hdl.handle.net/20.500.14288/26715
dc.identifier.wos980953100001
dc.keywordsBismuth compounds
dc.keywordsCrystal structure
dc.keywordsMicrohardness
dc.keywordsThermoelectricity
dc.languageen
dc.publisherAmer Chemical Soc
dc.relation.grantnoScientific and Technological Research Council of Turkey (TUBITAK) [218M335]; French Agence Nationale de la Recherche (ANR) , through the PRCI project DENZIP [ANR-18-CE05-0042]; Agence Nationale de la Recherche (ANR) [ANR-18-CE05-0042] Funding Source: Agence Nationale de la Recherche (ANR)
dc.sourceChemistry of Materials
dc.subjectChemistry
dc.subjectPhysical
dc.titleEnhancing thermoelectric and mechanical properties of P-Type (Bi, Sb)2Te3 through rickardite mineral (Cu2.9Te2) incorporation
dc.typeJournal Article

Files