Tool flank wear prediction using high-frequency machine data from industrial edge device

dc.contributor.authorid0000-0002-8316-9623
dc.contributor.authoridN/A
dc.contributor.authoridN/A
dc.contributor.authoridN/A
dc.contributor.coauthorBilgili, Deniz
dc.contributor.coauthorBurun, Gizem
dc.contributor.coauthorPehlivan, Toprak
dc.contributor.coauthorUresin, Ugur
dc.contributor.coauthorEmekli, Engin (25621135500
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorLazoğlu, İsmail
dc.contributor.kuauthorBeşirova, Cemile
dc.contributor.kuauthorKeçibaş, Gamze
dc.contributor.kuauthorChehrezad, Mohammad Reza
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileUndergraduate Student
dc.contributor.kuprofileResearcher
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.yokid179391
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2025-01-19T10:32:23Z
dc.date.issued2023
dc.description.abstractTool flank wear monitoring can minimize machining downtime costs while increasing productivity and product quality. In some industrial applications, only a limited level of tool wear is allowed to attain necessary tolerances. It may become challenging to monitor a limited level of tool wear in the data collected from the machine due to the other components, such as the flexible vibrations of the machine, dominating the measurement signals. In this study, a tool wear monitoring technique to predict limited levels of tool wear from the spindle motor current and dynamometer measurements is presented. High-frequency spindle motor current data is collected with an industrial edge device while the cutting forces and torque are measured with a rotary dynamometer in drilling tests for a selected number of holes. Feature engineering is conducted to identify the statistical features of the measurement signals that are most sensitive to small changes in tool wear. A neural network based on the long short-term memory (LSTM) architecture is developed to predict tool flank wear from the measured spindle motor current and dynamometer signals. It is demonstrated that the proposed technique predicts tool flank wear with good accuracy and high computational efficiency. The proposed technique can easily be implemented in an industrial edge device as a real-time predictive maintenance application to minimize the costs due to manufacturing downtime and tool underuse or overuse. © 2023 Elsevier B.V.. All rights reserved.
dc.description.indexedbyScopus
dc.description.openaccessAll Open Access; Gold Open Access; Green Open Access
dc.description.publisherscopeInternational
dc.description.volume118
dc.identifier.doi10.1016/j.procir.2023.06.083
dc.identifier.issn22128271
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85173585547
dc.identifier.urihttps://doi.org/10.1016/j.procir.2023.06.083
dc.identifier.urihttps://hdl.handle.net/20.500.14288/26401
dc.keywordsDeep learning
dc.keywordsDigital shadow
dc.keywordsIndustrial edge device
dc.keywordsPredictive maintenance
dc.keywordsTool wear
dc.languageen
dc.publisherElsevier B.V.
dc.sourceProcedia Cirp
dc.subjectMechanical engineering
dc.titleTool flank wear prediction using high-frequency machine data from industrial edge device
dc.typeConference proceeding

Files