Broadband directional invisibility
Publication Date
2023
Advisor
Institution Author
Mostafazadeh, Ali
Co-Authors
Loran, Farhang
Journal Title
Journal ISSN
Volume Title
Publisher:
AIP Publishing
Type
Journal Article
Abstract
The discovery of unidirectional invisibility and its broadband realization in optical media satisfying spatial Kramers-Kronig relations are important landmarks of non-Hermitian photonics. We offer a precise characterization of a higher-dimensional generalization of this effect and find sufficient conditions for its realization in the scattering of scalar waves in two and three dimensions and electromagnetic waves in three dimensions. More specifically, given a positive real number alpha and a continuum of unit vectors Omega, we provide explicit conditions on the interaction potential (or the permittivity and permeability tensors of the scattering medium in the case of electromagnetic scattering) under which it displays perfect (non-approximate) invisibility whenever the incident wavenumber k does not exceed alpha (i.e., k is an element of( 0 , alpha ]) and the direction of the incident wave vector ranges over Omega. A distinctive feature of our approach is that it allows for the construction of potentials and linear dielectric media that display perfect directional invisibility in a finite frequency domain.
Description
Subject
Physics, Mathematics