Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 116
  • Placeholder
    Publication
    Acetylene ligands stabilize atomically dispersed supported rhodium complexes under harsh conditions
    (Elsevier Science Sa, 2024) Hoffman, Adam S.; Hong, Jiyun; Perez-Aguilar, JorgeE.; Bare, Simon R.; Department of Chemical and Biological Engineering; Zhao, Yuxin; Öztulum, Samira Fatma Kurtoğlu; Uzun, Alper; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering
    Facile sintering of atomically dispersed supported noble metal catalysts at catalytically relevant temperatures, particularly under reducing conditions, poses a challenge for their practical applications. Some ligands, such as carbonyls, aid in improving the stability at the expense of severely suppressing the catalytic activity. Here, we demonstrate that substitution of the carbonyl ligands with reactive acetylene ligands can maintain the atomic dispersion of the supported mononuclear rhodium complex under harsh reducing conditions (>573 K), as confirmed by in -situ X-ray absorption near -edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies. In contrast, the supported rhodium carbonyl complex aggregates into nanoclusters under identical conditions. Furthermore, our results indicate that the acetylene ligands provide this anti -sintering ability while retaining the hydrogenation activity.
  • Placeholder
    Publication
    Boosting methylene blue adsorption capacity of an industrial waste-based geopolymer by depositing graphitic carbon nitride onto its surface: towards sustainable materials for wastewater treatment
    (Pergamon-Elsevier Science Ltd, 2024) Kaya-Ozkiper, Kardelen; Soyer-Uzun, Sezen; Department of Chemical and Biological Engineering; Uzun, Alper; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering
    Surface characteristics of a geopolymer (GP) from an industrial waste, red mud (RM), and metakaolin (MK), were tuned by depositing urea-derived graphitic carbon nitride (g-C3N4) onto its surface. Methylene blue (MB) adsorption measurements demonstrated that the resulting g-C3N4/RM-MK-GP offers an excellent MB uptake capacity of 170.9 mg g-1, much higher than those of either the GP or the g-C3N4. Kinetics measurements revealed that chemisorption has an important effect on adsorption. The regenerability of g-C3N4/RM-MK-GP was studied for up to four consecutive cycles. Differences between the adsorption capacities of g-C3N4 and g-C3N4/RM-MKGP were investigated by combining the power of various characterization tools. Results pointed out that surface functional groups associated with g-C3N4, surface hydroxyl and silanol groups of RM-MK-GP, together with exchangeable charge balancing cations of geopolymeric framework provide a unique structure for g-C3N4/RMMK-GP. This study presents a versatile route to produce a sustainable, efficient, and cheap adsorbent for wastewater treatment.
  • Placeholder
    Publication
    IL-modified MOF-177 filler boosts the CO2/N2 selectivity of Pebax membrane
    (Elsevier, 2024) Department of Chemical and Biological Engineering; Habib, Nitasha; Tarhanlı, İlayda; Şenses, Erkan; Keskin, Seda; Uzun, Alper; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Graduate School of Sciences and Engineering; College of Engineering
    Mixed matrix membranes (MMMs) having ionic liquid (IL) modified metal-organic frameworks (MOF) as fillers present a broad potential for enhancing the separation properties of the polymers. Here, we incorporated an IL, 1butyl-1-methyl-pyrrolidinium tricyanomethanide [BMPyr][TCM], into MOF-177 and used the corresponding composite as filler in Pebax polymer to fabricate IL/MOF-177/Pebax MMMs at different filler loadings. These MMMs along with those prepared by using pristine MOF-177 as a filler were then tested for CO2/N2 separation by measuring their CO2 and N2 permeabilities at 35 degrees C and 1 bar. The [BMPyr][TCM]/MOF-177/Pebax MMM having 10 wt.% filler loading showed remarkable improvements in both CO2 permeability (137 f 2.0 Barrer) and CO2/N2 selectivity (622 f 105) compared to the neat Pebax membrane having corresponding performance values of 98.0 f 2.0 Barrer and 64.5 f 6.0, respectively. This simultaneous improvement in both CO2 permeability and CO2/N2 selectivity breaks the trade-off limitation of polymer membranes. Besides, the MMMs having 10 and 15 wt.% loadings of fillers were located well above the updated Robeson's upper bound, demonstrating the great promise of [BMPyr][TCM]/MOF-177/Pebax MMMs for CO2/N2 separation.
  • Placeholder
    Publication
    Atomically dispersed zeolite-supported rhodium complex: selective and stable catalyst for acetylene semi-hydrogenation
    (Academic Press Inc., 2024) Su Yordanli, Melisa; Hoffman, Adam S.; Hong, Jiyun; Perez-Aguilar, Jorge E.; Saltuk, Aylin; Akgül, Deniz; Demircan, Oktay; Ateşin, Tülay A.; Aviyente, Viktorya; Gates, Bruce C.; Bare, Simon R.; Department of Chemical and Biological Engineering; Zhao, Yuxin; Bozkurt, Özge Deniz; Öztulum, Samira Fatma Kurtoğlu; Uzun, Alper; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering
    Supported rhodium catalysts are known to be unselective for semi-hydrogenation reactions. Here, by tuning the electronic structure of supported mononuclear rhodium sites determined by the metal nuclearity and the electron-donor properties of the support, we report that atomically dispersed HY zeolite-supported rhodium with reactive acetylene ligands affords a stable ethylene selectivity > 90 % for acetylene semi-hydrogenation at 373 K and atmospheric pressure, even when ethylene is present in a large excess over acetylene. Infrared and X-ray absorption spectra and measurements of rates of the catalytic reaction complemented with calculations at the level of density functional theory show how the catalyst performance depends on the electronic structure of the rhodium, influenced by the support as a ligand that is a weak electron donor.
  • Placeholder
    Publication
    Equipment selection for coupling a microgrid with a power-to-gas system in the context of optimal design and operation
    (Elsevier Ltd, 2024) Akülker, Handan; Department of Chemical and Biological Engineering; Aydın, Erdal; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); College of Engineering
    This study proposes a one-layer deterministic Mixed-Integer Nonlinear Programming to design and schedule a PTG-integrated microgrid. The key contribution is that optimal equipment selection, design, and scheduling, considering the PTG system at the core of the problem, are determined just in a single formulation. Scenarios based on different carbon dioxide taxes and natural gas prices are investigated. Only one wind turbine farm is chosen when the carbon dioxide tax is increased from 50 $/ton to 100 $/ton. On the other hand, when the natural gas price is increased from 1.548 $/m3 to 1.72 $/m3, two wind turbine farms are selected. Solar panel arrays are not chosen in all the scenarios. Generated power by solar panels is not enough for installation despite their much lower carbon dioxide emissions and negligible operational costs. Consequently, the optimal equipment selections may change linked to the natural gas price and carbon dioxide tax.
  • Placeholder
    Publication
    [BMIM][OAc] coating layer makes activated carbon almost completely selective for CO2
    (Elsevier Science Sa, 2022) N/A; N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Durak, Özce; Zeeshan, Muhammad; Keskin, Seda; Uzun, Alper; Master Student; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 40548; 59917
    Tuning the molecular affinity of porous materials towards desired gases is important to achieve superior selectivity for a target separation. Herein, we report a novel composite, prepared by coating an ordinary activated carbon (AC) with an ionic liquid (IL) (1-butyl-3-methylimidazolium acetate, [BMIM][OAc]) offering an almost complete CO2 selectivity over N-2 and CH4. Data indicated that pore blockage by the IL accompanied with the enhancement in polarity and reduction in the hydrophobic character of the surface hindered the sorption of N-2 and CH4. For CO2, on the other hand, new chemisorption and physisorption sites became available associated with the IL layer on the surface, making the composite material significantly selective. Newly formed chemisorption sites attributed to the cation's acidic C2H sites, which become available with bi-layer formation. Presence of multiple competitive sorption sites with different energies was further proven with thermal analysis and detailed spectroscopic analysis. Data showed that CO2/CH4 and CO2/N-2 ideal selectivities boosted from 3.3 to 688.3 (2.3 to 54.7) and from 15.6 to 903.7 (7.1 to 74.3) at 0.1 (1) bar and 25 degrees C, respectively, upon the deposition of IL layer. Especially at lower pressures, the IL/AC material became almost fully selective for CO2 offering ideal selectivities in the order of several tens of thousands. To the best of our knowledge, the remarkable enhancement in the ideal CO2 selectivity by a straightforward post-synthesis modification of an ordinary AC, as reported here, sets a new benchmark in high-performance and efficient gas separation for similar porous materials.
  • Placeholder
    Publication
    Opportunities and challenges of MOF-based membranes in gas separations
    (Elsevier, 2015) Avci, Ahmet K.; N/A; Department of Chemical and Biological Engineering; Adatoz, Elda Beruhil; Keskin, Seda; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 40548
    Gas separation using metal organic framework (MOF) membranes has become an increasingly important research field over the last years. Several recent studies have shown that thin-film MOF membranes and MOF/polymer composite membranes can outperform well known polymer and zeolite membranes in various gas separation applications. The continuously increasing number of experimental and computational studies emphasizes the superior membrane properties of MOFs. In this review, we present a summary of experimental and computational studies both for thin-film MOF membranes and MOF/polymer composite membranes. We aim to address opportunities and challenges related with use of MOF membranes for gas separations as well as give directions on the requirements for employing these membranes in practical applications. (C) 2015 Elsevier B.V. All rights reserved.
  • Placeholder
    Publication
    Computational assessment of MOF membranes for CH4/H2 separations
    (Elsevier, 2016) N/A; Department of Chemical and Biological Engineering; Eruçar, İlknur; Keskin, Seda; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Engineering; 260094; 40548
    MOFs have received significant attention as gas separation membranes due to their wide range of pore sizes, permanent porosities and high surface areas. Thousands of MOFs have been reported to date. However, membrane performance of only a small number of MOFs has been experimentally reported since fabrication of thin-film MOF membranes is challenging. In this study, we used atomically-detailed simulations to assess membrane-based CH4/H-2 separation performances of 172 different MOF structures. Adsorption selectivity, diffusion selectivity, membrane selectivity and gas permeability of MOFs were calculated using atomically-detailed simulations to identify the most promising membrane materials. Our results show that a significant number of MOF membranes exhibits high CH4 selectivity over H-2 and a small number of MOF membranes exhibits mediocre H-2 selectivity over CH4. Gas permeabilities and selectivities of MOF membranes were compared with traditional membranes such as polymers and zeolites. Several MOFs were identified to exceed the upper bound established for polymeric membranes and many MOF membranes showed higher gas permeabilities and selectivities than zeolites LTA, ITQ-29 and MFI. We also carried out flexible molecular dynamics simulations to examine the effect of MOF's flexibility on the predicted membrane performance. Considering flexibility of the framework made a negligible effect on the gas permeability and selectivity of the material having large pores whereas more pronounced changes were seen in gas permeabilities of the material having narrow pores. The results of this computational study will be helpful to guide the experiments to the most promising MOF membranes for CH4/H-2 separations. (C) 2016 Elsevier B.V. All rights reserved.
  • Placeholder
    Publication
    Gap metric concept and implications for multilinear model-based controller design
    (Amer Chemical Soc, 2003) Galan, O.; Romagnoli, J.A.; Palazoglu, A.; Department of Chemical and Biological Engineering; Arkun, Yaman; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 108526
    The gap metric concept is used within the context of multilinear model-based control. The concept of distance between dynamic systems is used as a criterion for selecting a set of models that can explain the nonlinear plant behavior in a given operating range. The case studies presented include a CSTR and a pH neutralization reactor. The gap metric is used to analyze the relationships among candidate models, resulting in a reduced model set that provides enough information to design multilinear controllers. The simulation and experimental results indicate good performance and stability features.
  • Placeholder
    Publication
    Short- and long-term thermal stabilities of imidazolium-type ionic liquids on catalytic metal-oxide supports
    (AIChE, 2013) N/A; N/A; Department of Chemical and Biological Engineering; Akçay, Aslı; Balcı, Volkan; Uzun, Alper; Master Student; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 59917
    N/A