Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 141
  • Placeholder
    Publication
    End-to-end service-level management framework over multi-domain software defined networks
    (Institute of Electrical and Electronics Engineers (IEEE), 2016) N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Bağcı, Kadir Tolga; Nacaklı, Selin; Şahin, Kemal Emrecan; Tekalp, Ahmet Murat; PhD Student; PhD Student; Master Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; 26207
    We introduce a distributed, dynamic, end-to-end (E2E) service-level management framework over a multi-domain SDN in order to enable end users to negotiate with their service providers a level of service according to their needs and budget. In this framework, the service provider offers multiple levels of service and allocates network resources to each user to satisfy specific service level requests in a fair manner. To this effect, controllers of different domains negotiate with each other to satisfy the service level parameters of service requests, where functions that manage E2E services collaborate with functions that manage network resources of respective domains. The proposed framework and procedures have been verified over a newly developed large-scale multi-domain SDN emulation environment./ Öz: Çok-alanlı yazılım tanımlı ağlarda (YTA), son kul- lanıcıların servis sağlayıcıları ile belirli bir servis kalitesi için uzlaşmalarını sağlamak amacıyla da gıtık, dinamik ve uçtan uca servis kalitesi yönetimi önermekteyiz. Bu yapıda servis saglayıcıları birçok servis seviyesi önermekte ve ağ kaynaklarını kullanıcılara adil bir ¸sekilde bölü¸stürmektedir. Bu amaçla, uçtan uca servisleri ve her bir alanın kaynaklarını yöneten modüller işbirligi yaparak farklı alanların ağ yöneticilerinin servis istek- lerinin kısıtlarını sağlayacak şekilde birbirleri ile uzlaşmalarına olanak sağlamaktadır. Önerilen yapı ve modüller yeni geliştirilmiş büyük ölçekli çok-alanlı bir YTA’da test edilmiştir.
  • Placeholder
    Publication
    A physical channel model for nanoscale neuro-spike communications
    (IEEE-Inst Electrical Electronics Engineers Inc, 2013)  Balevi, eren; Department of Electrical and Electronics Engineering; Akan, Özgür Barış; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 6647
    Nanoscale communications is an appealing domain in nanotechnology. Novel nanoscale communications techniques are currently being devised inspired by some naturally existing phenomena such as the molecular communications governing cellular signaling mechanisms. Among these, neuro-spike communications, which governs the communications between neurons, is a vastly unexplored area. The ultimate goal of this paper is to accurately investigate nanoscale neuro-spike communications characteristics through the development of a realistic physical channel model between two neurons. The neuro-spike communications channel is analyzed based on the probability of error and delay in spike detection at the output. The derived communication theoretical channel model may help designing novel artificial nanoscale communications methods for the realization of future practical nanonetworks, which are the interconnections of nanomachines.
  • Placeholder
    Publication
    Electric-field energy harvesting in wireless networks
    (Ieee-Inst Electrical Electronics Engineers Inc, 2017) Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Çetinkaya, Oktay; Akan, Özgür Barış; Other; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; College of Engineering; N/A; 6647
    Electric-field energy harvesting (EFEH) can be considered as an emerging and promising alternative for self-sustainable next-generation WSNs. Unlike conventional harvesting methods that rely on ambient variables, EFEH provides more reliable and durable operation as it is operable with any voltage-applied conductive material. Therefore, it is better suited for advanced throughput and applications requiring a certain QoS. In this article, we introduce this newly emerging WSN paradigm, and focus on enabling EFEH technology for smart grid architectures, such as home, building, and near area networks, where the field intensity is relatively low. To this end, a practical methodology and a general use implementation framework have been developed for low-voltage applications by regarding compelling design issues and challenging source scarcity. The proposed double-layer harvester model is experimentally evaluated. Its performance in terms of implementation flexibility, sensor lifetime, and communication throughput is investigated. In addition, current challenges, open issues, and future research directions are discussed for the design of more enhanced EFEH wireless networks.
  • Placeholder
    Publication
    Through the glance mug: a familiar artefact to support opportunistic search in meetings
    (Assoc Computing Machinery, 2018) N/A; Department of Psychology; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Department of Psychology; Department of Media and Visual Arts; Börütecene, Ahmet; Bostan, İdil; Akyürek, Ekin; Sabuncuoğlu, Alpay; Temuzkuşu, İlker; Genç, Çağlar; Göksun, Tilbe; Özcan, Oğuzhan; PhD Student; Undergraduate Student; Undergraduate Student; PhD Student; Researcher; PhD Student; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Department of Psychology; Department of Media and Visual Arts; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); N/A; N/A; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); N/A; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Graduate School of Social Sciences and Humanities; College of Social Sciences and Humanities; College of Engineering; Graduate School of Sciences and Engineering; N/A; Graduate School of Social Sciences and Humanities; College of Social Sciences and Humanities; College of Social Sciences and Humanities; N/A; N/A; N/A; N/A; N/A; N/A; 47278; 12532
    During collocated meetings, the spontaneous need for information, called opportunistic search, might arise while conversing. However, using smartphones to look up information might be disruptive, disrespectful or even embarrassing in social contexts. We propose an alternative instrument for this practice: Glance Mug, A touch-sensitive mug prototype that listens to the conversation and displays browsable content-driven results on its inner screen. We organized 15 pairs of one-to-one meetings between students to gather user reflections. the user study revealed that the mug has the potential for supporting instant search and affords sufficient subtlety to conceal user actions. Yet, it provoked some anxiety for the users in maintaining eye contact with their partners. Our main contributions are the context-aware mug concept tested in a real-life setting and the analysis through Hornecker and Buur's Tangible interaction Framework that discusses its design space, and its impact on the users and social interaction.
  • Placeholder
    Publication
    Modeling and characterization of comb-actuated resonant microscanners
    (Iop Publishing Ltd, 2006) N/A; Department of Electrical and Electronics Engineering; Ataman, Çağlar; Ürey, Hakan; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 8579
    The dynamics of the out-of-plane comb-drive actuator used in a torsional resonant mode microscanner is discussed. The microscanner is fabricated using the standard SOI technology by Fraunhofer, IPMS and utilized in various display, barcode scanning, spectroscopy and other imaging applications. The device is a parametrically excited system and exhibits hysteretic frequency response, nonlinear transient response, subharmonic oscillations, multiple parametric resonances, and alternating-oscillation-frequency behavior. Analytical and numerical models are developed to predict the parametric system dynamics. The analytical model is based on the solution of the linear Mathieu equation and valid for small angular displacements. The numerical model is valid for both small and large deflection angles. The analytical and numerical models are validated with the experimental results under various ambient pressures and excitation schemes and successfully predict the dynamics of the parametric nature of the microscanner. As many as four parametric resonances are observed at 30 mTorr. The models developed in this paper can be used to optimize the structure and the actuator.
  • Placeholder
    Publication
    On the convergence of ICA algorithms with symmetric orthogonalization
    (IEEE-Inst Electrical Electronics Engineers Inc, 2009) Department of Electrical and Electronics Engineering; Erdoğan, Alper Tunga; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 41624
    Independent component analysis (ICA) problem is often posed as the maximization/minimization of an objective/cost function under a unitary constraint, which presumes the prewhitening of the observed mixtures. The parallel adaptive algorithms corresponding to this optimization setting, where all the separators are jointly trained, are typically implemented by a gradient-based update of the separation matrix followed by the so-called symmetrical orthogonalization procedure to impose the unitary constraint. This article addresses the convergence analysis of such algorithms, which has been considered as a difficult task due to the complication caused by the minimum-(Frobenius or induced 2-norm) distance mapping step. We first provide a general characterization of the stationary points corresponding to these algorithms. Furthermore, we show that fixed point algorithms employing symmetrical orthogonalization are monotonically convergent for convex objective functions. We later generalize this convergence result for nonconvex objective functions. At the last part of the article, we concentrate on the kurtosis objective function as a special case. We provide a new set of critical points based on Householder reflection and we also provide the analysis for the minima/maxima/saddle-point classification of these critical points.
  • Placeholder
    Publication
    Resonant PZT MEMS scanners with integrated angle sensors
    (IEEE Computer Society, 2014) Brown, Dean; Davis, Wyatt; N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Baran, Utku; Holmstrom, Sven; Çakmak, Onur; Ürey, Hakan; Master Student; Researcher; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; 8579
    Several high performing PZT-actuated MEMS laser scanners utilizing mechanical coupling are designed, fabricated, and characterized. Optical angles up to 59.3 deg. and θoptD·fn-products up to 3052 deg.·mm·Hz are demonstrated. These are the highest performing MEMS scanners in the literature. An angle sensor is integrated into one scanner design without any additional processing. The sensor response shows a linear relationship with the mirror rotation. A closed-loop drive was demonstrated using the scanner output.
  • Placeholder
    Publication
    Comb-actuated resonant torsional microscanner with mechanical amplification
    (IEEE-Inst Electrical Electronics Engineers Inc, 2010) Brown, Dean; Davis, Wyatt O.; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Arslan, Aslıhan; Holmstrom, Sven; Gökçe, Sertan Kutal; Ürey, Hakan; Researcher; Researcher; Master Student; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; 8579
    A comb-actuated torsional microscanner is developed for high-resolution laser-scanning display systems. Typical torsional comb-drive scanners have fingers placed around the perimeter of the scanning mirror. In contrast, the structure in this paper uses cascaded frames, where the comb fingers are placed on an outer drive frame, and the motion is transferred to the inner mirror frame with a mechanical gain. The structure works only in resonant mode without requiring any offset in the comb fingers, keeping the silicon-on-insulator-based process quite simple. The design intent is to improve actuator efficiency by removing the high-drag fingers from the high-velocity scanning mirror. Placing them on the lower velocity drive frame reduces their contribution to the damping torque. Furthermore, placement on the drive frame allows an increase of the number of fingers and their capacity to impart torque. The microscanner exhibits a parametric response, and as such, the maximum deflection is found when actuated at twice its natural frequency. Analytical formulas are given for the coupled-mode equations and frame deflections. A simple formula is derived for the mechanical-gain factor. For a 1-mm x 1.5-mm oblong scanning mirror, a 76. total optical scan angle is achieved at 21.8 kHz with 196-V peak-to-peak excitation voltages. [2009-0304]
  • Placeholder
    Publication
    Guest editorial special issue on toward securing Internet of Connected Vehicles (IoV) from virtual vehicle hijacking
    (Institute of Electrical and Electronics Engineers (IEEE), 2019) Cao, Yue; Kaiwartya, Omprakash; Song, Houbing; Lloret, Jaime; Ahmad, Naveed; Department of Electrical and Electronics Engineering; Ergen, Sinem Çöleri; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 7211
    N/A
  • Placeholder
    Publication
    Analysis and optimization of duty-cycle in preamble-based random access networks
    (Springer, 2013) Fischione, C.; Park, P.; Department of Electrical and Electronics Engineering; Ergen, Sinem Çöleri; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 7211
    Duty-cycling has been proposed as an effective mechanism for reducing the energy consumption in wireless sensor networks (WSNs). Asynchronous duty-cycle protocols where the receiver wakes up periodically to check whether there is a transmission and the sender transmits preambles to check if the receiver is awake are widely used in WSNs due to the elimination of complex control mechanisms for topology discovery and synchronization. However, the intrinsic simplicity of the asynchronous mechanism has the drawback of smaller energy saving potential that requires the optimization of the duty cycle parameters. In this paper, we propose a novel method for the optimization of the duty-cycle parameters in preamble-based random access networks based on the accurate modeling of delay, reliability and energy consumption as a function of listen time, sleep time, traffic rate and medium access control (MAC) protocol parameters. The challenges for modeling are the random access MAC and the sleep policy of the receivers, which make it impossible to determine the exact time of data packet transmissions, and thus difficult to investigate the performance indicators given by the delay, reliability and energy consumption to successfully receive packets. An analysis of these indicators is developed as a function of the relevant parameters of the network and it is used in the minimization of the energy consumption subject to delay and reliability requirements. The optimization provides significant reduction of the energy consumption compared to the previously proposed protocols in the literature.