Publications without Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3
Browse
134 results
Filters
Advanced Search
Filter by
Settings
Search Results
Publication Metadata only Robust adhesive nanocomposite sponge composed of citric acid and nano clays modified cellulose for rapid hemostasis of lethal non-compressible hemorrhage(Elsevier Ltd, 2024) Mahmoodzadeh,A; Valizadeh,N; Edalati,M; Khordadmehr,M; Salehi,R; Jarolmasjed,S; Gargari, Ziba Zakeri; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)Massive bleeding control plays the main role in saving people's lives in emergency situations. Herein, modified cellulose-based nanocomposite sponges by polydopamine (PDA) and laponite nano-clay was developed to sturdily deal with non-compressible lethal severe bleeding. PDA accomplishes supreme adhesion in the bleeding site (similar to 405 kPa) to form strong physical barrier and seal the position. Sponges super porous (similar to 70 % porosity) and super absorbent capacity (48 g blood absorbed per 1 g sponge) by concentrating the blood cells and platelets provides the requirements for primary hemostasis. Synergistically, the nanocomposite sponges' intelligent chemical structure induces hemostasis by activation of the XI, IX, X, II and FVII factors of intrinsic and extrinsic coagulation pathways. Excellent hemostatic performance of sponges in-vitro was assessed by RBC accumulation (similar to 100 %), blood clotting index (similar to 10 %), platelet aggregation/activation (-93 %) and clotting time. The nanocomposite sponges depicted super performance in the fatal high-pressure non-compressible hemorrhage model by reducing of >2, 15 and 3 times in the bleeding amount at New Zealand rabbit's heart and liver, and rat's femoral artery bleeding models, respectively compared to commercial hemostatic agents (Pvalue<0.001). The in-vivo host response results exhibited biosafety with no systemic and significant local inflammatory response by hematological, pathological and biochemical parameters assessments.Publication Metadata only Collision-induced state-changing rate coefficients for cyanogen backbones NCN 3Σ− and CNN 3Σ− in astrophysical environments(Royal Society of Chemistry, 2023) González-Sánchez, Lola; de la Fuente, Jorge Alonso; Sanz-Sanz, Cristina; Wester, Roland; Gianturco, Francesco A.; Department of Chemistry; Department of Chemistry; College of SciencesWe report quantum calculations involving the dynamics of rotational energy-transfer processes, by collision with He atoms in interstellar environments, of the title molecular species which share the presence of the CN backbone and are considered of importance in those environments. The latter structural feature is taken to be especially relevant for prebiotic chemistry and for its possible role in the processing of the heterocyclic rings of RNA and DNA nucleobases in the interstellar space. We carry out ab initio calculations of their interaction potentials with He atoms and further obtain the state-to-state rotationally inelastic cross sections and rate coefficients over the relevant range of temperatures. The similarities and differences between such species and other similar partners which have been already detected are analyzed and discussed for their significance on internal state populations in interstellar space for the two title molecular radicals.Publication Metadata only Solar-light-driven photocatalytic hydrogen evolution activity of gCN/WS2 heterojunctions incorporated with the first-row transition metals(Elsevier Science Sa, 2023) Acar, Eminegul Genc; Aslan, Emre; Patir, Imren Hatay; Department of Chemistry; Yılmaz, Seda; Eroğlu, Zafer; Metin, Önder; Department of Chemistry; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of SciencesThe design of semiconductor-based heterojunctions is an effective strategy to build highly active photo-catalyst systems. In this study, tungsten disulfide (WS2) modified graphitic carbon nitride (gCN) hetero-junction (gCN/WS2) is incorporated with Co and Ni (gCN/WS2-Co and gCN/WS2-Ni) to enhance the photocatalytic hydrogen evolution reaction (HER) activity of gCN/WS2 via performing a chemical reduction method and characterized by advanced analytical techniques. The photocatalytic HER activities of gCN, gCN/ WS2, gCN/WS2-Ni and gCN/WS2-Co were measured as 0.126, 0.221, 0.237 and 0.249 mmol g-1h-1, respec-tively, under the visible light irradiation. The improvement of photocatalytic activity and stability of gCN/ WS2-Ni and gCN/WS2-Co nanocomposites could be attributed to the 2D/2D heterojunction structure, ex-tended light harvesting ability, increased electron-hole lifetime and decreased recombination rate of the charge carriers. Moreover, mechanistic studies revealed that a S-scheme heterojunction is attributed to the enhanced photocatalytic HER by the gCN/WS2-Ni and gCN/WS2-Co photocatalysts, which provides pro-moted efficiency by photocarrier transfer and separation.Publication Metadata only 3D printed styrax liquidus (liquidambar orientalis miller)-loaded poly (l-lactic acid)/chitosan based wound dressing material: fabrication, characterization, and biocompatibility results(Elsevier, 2023) Cakmak, Hanife Yuksel; Ege, Hasan; Yilmaz, Senanur; Agturk, Gokhan; Enguven, Gozde; Sarmis, Abdurrahman; Cakmak, Zeren; Gunduz, Oguzhan; Ege, Zeynep Ruya; Yöntem, Fulya Dal; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of MedicineThe medicinal plant of Styrax liquidus (ST) (sweet gum balsam) which extracted from Liquidambar orientalis Mill tree, was loaded into the 3D printed polylactic acid (PLA)/chitosan (CS) based 3D printed scaffolds to investigate its wound healing and closure effect, in this study. The morphological and chemical properties of the ST loaded 3D printed scaffolds with different concentrations (1 %, 2 %, and 3 % wt) were investigated by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR), respectively. In addition, the me-chanical and thermal properties of the materials were investigated by Tensile test and Differential Scanning Calorimetry (DSC), respectively. The antimicrobial activities of the ST loaded 3D printed scaffolds and their incubation media in the PBS (pH 7.4, at 37 degrees C for 24 h) were investigated on two Gram-positive and two Gram -negative standard pathogenic bacteria with the agar disc diffusion method. The colorimetric MTT assay was used to determine the cell viability of human fibroblast cells (CCD-1072Sk) incubated with free ST, ST loaded, and unloaded 3D printed scaffolds. The 1 % and 2 % (wt) ST loaded PLA/CS/ST 3D printed scaffolds showed an increase in the cell number. Annexin V/PI double stain assay was performed to test whether early or late apoptosis was induced in the PLA/CS/1 % ST and PLA/CS/2 % ST loaded groups and the results were consistent with the MTT assay. Furthermore, a wound healing assay was carried out to investigate the effect of ST loaded 3D printed scaffolds on wound healing in CCD-1072Sk cells. The highest wound closure compared to the control group was observed on cells treated with PLA/CS/1 % ST for 72 h. According to the results, novel biocompatible ST loaded 3D printed scaffolds with antimicrobial effect can be used as wound healing material for potential tissue engineering applications.Publication Metadata only Nanotechnology-based electrochemical biosensors for monitoring breast cancer biomarkers(John Wiley and Sons Inc, 2023) Nasrollahpour, Hassan; Khalilzadeh, Balal; Hasanzadeh, Mohammad; Rahbarghazi, Reza; Estrela, Pedro; Naseri, Abdolhossein; Sillanpää, Mika; Department of Mechanical Engineering; Taşoğlu, Savaş; Department of Mechanical Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of EngineeringBreast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.Publication Metadata only Bulk MgB2 superconductor for levitation applications fabricated with boron processed by different routes(Elsevier Science Sa, 2023) Savaskan, B.; Ozturk, U. K.; Guner, S. B.; Abdioglu, M.; Bahadir, M. V.; Acar, S.; Ionescu, A. M.; Locovei, C.; Enculescu, M.; Badica, P.; Department of Chemistry; Somer, Mehmet Suat; Department of Chemistry; College of SciencesBulk MgB2 discs were prepared by an in situ route from mixtures of magnesium and boron powders. The boron powders were produced by two methods. The first one consisted of a self-propagating high tem-perature magnesiothermic synthesis (SHS) process followed by acid and fluorine cleaning and a heat treatment in inert atmosphere. This approach produced boron with purities between 86 % and 97 %, where the main impurity was Mg. Depending on the final heat treatment, these boron powders were amorphous or crystalline. In the second route, high purity nano powders (99 %) of boron were obtained by a diborane pyrolysis process. Bulks of MgB2 were characterized by structural, microstructural, and magnetic mea-surements. Critical current density, pinning force aspects and levitation force (including guiding force) details were assessed. Amorphous lower purity boron (86-97 %) obtained by the first processing route was found to promote the largest levitation forces of the MgB2 bulks and, among these samples, the best le-vitation results were recorded when using boron with a purity of 95-97 %. Use of a lower purity boron that decreases the cost of MgB2 promotes large scale production at industrial level of bulk MgB2 super-conducting magnets for levitation applications and enhances the applicability potential of MgB2 super-conductor. The relationship between levitation force and specific features of the samples such as pinning force details are discussed.Publication Metadata only Liquid metal microdroplet-initiated ultra-fast polymerization of a stimuli-responsive hydrogel composite(Wiley-V C H Verlag Gmbh, 2023) Zhang, Jianhua; Liao, Jiahe; Liu, Zemin; Zhang, Rongjing; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of MedicineRecent advances in composite hydrogels achieve material enhancement or specialized stimuli-responsive functionalities by pairing with a functional filler. Liquid metals (LM) offer a unique combination of chemical, electrical, and mechanical properties that show great potential in hydrogel composites. Polymerization of hydrogels with LM microdroplets as initiators is a particularly interesting phenomenon that remains in its early stage of development. In this work, an LM-hydrogel composite is introduced, in which LM microdroplets dispersed inside the hydrogel matrix have dual functions as a polymerization initiator for a polyacrylic acid-poly vinyl alcohol (PAA/PVA) network and, once polymerized, as passive inclusion to influence its material and stimuli-responsive characteristics. It is demonstrated that LM microdroplets enable ultra-fast polymerization in approximate to 1 min, compared to several hours by conventional polymerization techniques. The results show several mechanical enhancements to the PAA/PVA hydrogels with LM-initiated polymerization. It is found that LM ratios strongly influence stimuli-responsive behaviors in the hydrogels, including swelling and ionic bending, where higher LM ratios are found to enhance ionic actuation performance. The dual roles of LM in this composite are analyzed using the experimental characterization results. These LM-hydrogel composites, which are biocompatible, open up new opportunities in future soft robotics and biomedical applications. A composite hydrogel embedded with liquid metal (LM) microdroplets is introduced, where the LM microdroplets have dual roles of initiating ultra-fast polymerization and passive inclusion. The physical effects of LM on polymerization and stimuli-responsive behaviors are analyzed, including swelling and ionic actuation due to osmotic pressure differences. Their benefits to the LM-hydrogel functionalities, such as robot locomotion, are demonstrated.Publication Metadata only Machine learning-based shear optimal adhesive microstructures with experimental validation(Wiley-V C H Verlag Gmbh, 2023) Dayan, Cem Balda; Son, Donghoon; Aghakhani, Amirreza; Wu, Yingdan; Demir, Sinan Ozgun; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of MedicineBioinspired fibrillar structures are promising for a wide range of disruptive adhesive applications. Especially micro/nanofibrillar structures on gecko toes can have strong and controllable adhesion and shear on a wide range of surfaces with residual-free, repeatable, self-cleaning, and other unique features. Synthetic dry fibrillar adhesives inspired by such biological fibrils are optimized in different aspects to increase their performance. Previous fibril designs for shear optimization are limited by predefined standard shapes in a narrow range primarily based on human intuition, which restricts their maximum performance. This study combines the machine learning-based optimization and finite-element-method-based shear mechanics simulations to find shear-optimized fibril designs automatically. In addition, fabrication limitations are integrated into the simulations to have more experimentally relevant results. The computationally discovered shear-optimized structures are fabricated, experimentally validated, and compared with the simulations. The results show that the computed shear-optimized fibrils perform better than the predefined standard fibril designs. This design optimization method can be used in future real-world shear-based gripping or nonslip surface applications, such as robotic pick-and-place grippers, climbing robots, gloves, electronic devices, and medical and wearable devices. This study combines the machine learning-based optimization and finite-element-method-based shear mechanics simulations to find shear-optimized fibril designs automatically. The results show that the computed optimal fibrils perform better than the predefined standard fibril designs. This design optimization framework can be used in future nonslip surface applications in grippers, robots, gloves, and electronic, medical, and wearable devices.Publication Metadata only Magnetic putty as a reconfigurable, recyclable, and accessible soft robotic material(Wiley-V C H Verlag Gmbh, 2023) Li, Meng; Pal, Aniket; Byun, Junghwan; Gardi, Gaurav; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of MedicineMagnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, magnetic putty is introduced as a magnetically hard and soft material with large remanence and low coercivity. It is shown that the magnetization of magnetic putty can be easily reoriented with maximum magnitude using an external field that is only one-tenth of its coercivity. Additionally, magnetic putty is a malleable, autonomous self-healing material that can be recycled and repurposed. The authors anticipate magnetic putty could provide a versatile and accessible tool for various magnetic robotics applications for fast prototyping and explorations for research and educational purposes. Permanent magnetic particles embedded in a viscoelastic putty matrix result in a self-healing soft magnetic material with both high remanence and low coercivity, providing hard-magnetic performance without the need for inaccessible strong magnetic fields. Programmable and reconfigurable magnetization, frequency-dependent force output, and easy to shape and assemble, magnetic putty can be a versatile tool in research prototyping and inspire future explorations.Publication Metadata only Liquid metal actuators: a comparative analysis of surface tension controlled actuation(Wiley-V C H Verlag Gmbh, 2023) Liao, Jiahe; Majidi, Carmel; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of MedicineLiquid metals, with their unique combination of electrical and mechanical properties, offer great opportunities for actuation based on surface tension modulation. Thanks to the scaling laws of surface tension, which can be electrochemically controlled at low voltages, liquid metal actuators stand out from other soft actuators for their remarkable characteristics such as high contractile strain rates and higher work densities at smaller length scales. This review summarizes the principles of liquid metal actuators and discusses their performance as well as theoretical pathways toward higher performances. The objective is to provide a comparative analysis of the ongoing development of liquid metal actuators. The design principles of the liquid metal actuators are analyzed, including low-level elemental principles (kinematics and electrochemistry), mid-level structural principles (reversibility, integrity, and scalability), and high-level functionalities. A wide range of practical use cases of liquid metal actuators from robotic locomotion and object manipulation to logic and computation is reviewed. From an energy perspective, strategies are compared for coupling the liquid metal actuators with an energy source toward fully untethered robots. The review concludes by offering a roadmap of future research directions of liquid metal actuators. This review summarizes the operation and design principles of surface tension-controlled actuation by liquid metals and discusses their performance and functionalities. Theoretical pathways toward higher performances, thanks to the unique scaling law of surface tension, are analyzed and compared to other popular soft actuators. The review concludes by offering a roadmap for future research directions.