Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 122
  • Placeholder
    Publication
    Hydrothermal liquefaction of chlamydomonas nivalis and nannochloropsis gaditana microalgae under different operating conditions over copper-exchanged zeolites
    (Elsevier B.V., 2024) Borhan, E.; Haznedaroglu, Berat Z.; Department of Chemical and Biological Engineering; Yousefzadeh, Hamed; Uzun, Alper; Erkey, Can; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering
    In this study, two different green microalgae, Chlamydomonas nivalis (C. nivalis) and Nannochloropsis gaditana (N. gaditana), were cultivated in open ponds and the harvested wet biomass was converted to bio-crude by hydrothermal liquefaction (HTL) with/without catalyst. Catalytic HTL experiments were performed by using copper-exchanged zeolites including Cu-MOR, Cu-ZSM-5, and Cu-SSZ13, synthesized by recently developed supercritical ion exchange method using scCO2. The composition of all bio-crudes was analyzed by elemental analysis and GC/MS. First, the effects of different operating conditions on the yields of the products and the bio-crude composition were determined for non-catalytic process. Temperature, duration, and water/algae biomass ratio in the feed were the process parameters investigated in the ranges of 250–350 ºC, 10–60 min, and 5–20 wt%, respectively. For C. nivalis, 300 ºC, 60 min, and water/algae ratio of 4 were the optimum conditions which led to maximum bio-crude yield of 18.8 wt%, while 300 ºC, 30 min, and water/algae ratio of 9 were the optimum ones for N. gaditana at which the maximum bio-crude yield of 34.0 wt% was observed. Bio-crude yield of N. gaditana was improved using Cu-MOR, while using catalysts for the case of C. nivalis resulted in more gasification with no positive effect on bio-crude yield. Moreover, elemental analysis showed that the fraction of nitrogen and oxygen in biocrude decreased in catalytic HTL runs, in line with the GC/MS results showing that the concentration of hydrocarbons and cyclic compounds increased in the presence of catalysts accompanied by a decrease in concentration of nitrogenous compounds.
  • Placeholder
    Publication
    Mechanical properties of silicon nanowires with native oxide surface state
    (Elsevier, 2024) Department of Mechanical Engineering; Zarepakzad, Sina; Esfahani, Mohammad Nasr; Alaca, Burhanettin Erdem; Department of Mechanical Engineering; n2STAR-Koç University Nanofabrication and Nanocharacterization Center for Scientifc and Technological Advanced Research; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering
    Silicon nanowires have attracted considerable interest due to their wide-ranging applications in nanoelectromechanical systems and nanoelectronics. Molecular dynamics simulations are powerful tools for studying the mechanical properties of nanowires. However, these simulations encounter challenges in interpreting the mechanical behavior and brittle to ductile transition of silicon nanowires, primarily due to surface effects such as the assumption of an unreconstructed surface state. This study specifically focuses on the tensile deformation of silicon nanowires with a native oxide layer, considering critical parameters such as cross-sectional shape, length -to -critical dimension ratio, temperature, the presence of nano -voids, and strain rate. By incorporating the native oxide layer, the article aims to provide a more realistic representation of the mechanical behavior for different critical dimensions and crystallographic orientations of silicon nanowires. The findings contribute to the advancement of knowledge regarding size -dependent elastic properties and strength of silicon nanowires.
  • Placeholder
    Publication
    Microfluidic pulse shaping methods for molecular communications
    (Elsevier, 2023) Department of Electrical and Electronics Engineering; Kahvazi Zadeh, Maryam; Bolhassan, Iman Mokari; Kuşcu, Murat; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering
    Molecular Communication (MC) is a bio-inspired communication modality that utilizes chemical signals in the form of molecules to exchange information between spatially separated entities. Pulse shaping is an important process in all communication systems, as it modifies the waveform of transmitted signals to match the characteristics of the communication channel for reliable and high-speed information transfer. In MC systems, the unconventional architectures of components, such as transmitters and receivers, and the complex, nonlinear, and time-varying nature of MC channels make pulse shaping even more important. While several pulse shaping methods have been theoretically proposed for MC, their practicality and performance are still uncertain. Moreover, the majority of recently proposed experimental MC testbeds that rely on microfluidics technology lack the incorporation of programmable pulse shaping methods, which hinders the accurate evaluation of MC techniques in practical settings. To address the challenges associated with pulse shaping in microfluidic MC systems, we provide a comprehensive overview of practical microfluidic chemical waveform generation techniques that have been experimentally validated and whose architectures can inform the design of pulse shaping methods for microfluidic MC systems and testbeds. These techniques include those based on hydrodynamic and acoustofluidic force fields, as well as electrochemical reactions. We also discuss the fundamental working mechanisms and system architectures of these techniques, and compare their performances in terms of spatiotemporal resolution, selectivity, system complexity, and other performance metrics relevant to MC applications, as well as their feasibility for practical MC applications.
  • Placeholder
    Publication
    Stepwise conversion of methane to methanol over Cu-mordenite prepared by supercritical and aqueous ion exchange routes and quantification of active Cu species by H2-TPR
    (Elsevier, 2023) Sushkevich, Vitaly; van Bokhoven, Jeroen A.; Department of Chemical and Biological Engineering; Yousefzadeh, Hamed; Bozbağ, Selmi Erim; Erkey, Can; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); College of Engineering
    Copper-exchanged mordenite prepared by supercritical ion exchange (SCIE) and aqueous ion exchange (AIE) were investigated in stepwise conversion of methane to methanol. Increasing the oxygen activation temperature and methane reaction time enhances the methanol yield of copper-exchanged mordenite prepared by SCIE (CuMORS). The reducibility of Cu-MORS was compared with those of Cu-MORA prepared by aqueous ion exchange (AIE) using H-2-TPR. It was demonstrated for the first time that deconvoluted H2-TPR profile coupled with effects of Cu loading and oxygen activation temperature on methanol yield data can be used to distinguish the active Cu sites from inactive ones based on their reduction temperature. The copper species responsible for methane activation were found to be reduced below 150 C by H-2 in both Cu-MORS and Cu-MORA. From the stoichiometry of the reaction of H-2 with Cu2+ species, the average number of copper atoms of active sites were calculated as 2.07 and 2.80 for Cu-MORS and Cu-MORA, respectively. Differences in structure of copper species caused by the synthesis routes were also detected by in-situ FTIR upon NO adsorption indicating a higher susceptibility of CuMORS towards autoreduction. The results demonstrated the potential of TPR based methods to identify copper active sites and suggested the importance of site selective ion exchange in order to controllably synthesize active Cu species in zeolites.
  • Placeholder
    Publication
    Black phosphorus/WS2-TM (TM: Ni, Co) heterojunctions for photocatalytic hydrogen evolution under visible light illumination
    (MDPI, 2023) Acar, Emineguel Genc; Çekceoglu, Ilknur Aksoy; Aslan, Emre; Patir, Imren Hatay; Department of Chemistry; Yılmaz, Seda; Eroğlu, Zafer; Metin, Önder; Department of Chemistry; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Sciences
    Black phosphorus (BP) has recently emerged as a versatile photocatalyst owing to its unique photophysical properties and tunable bandgap. Nonetheless, the rapid recombination of the photogenerated charges of pristine BP samples has significantly hindered its practical applications in photocatalysis. Herein, we report, for the first time, the effect of transition metal nanoparticles (Ni and Co) as co-catalysts on the photocatalytic activity of BP/tungsten disulfide (WS2) binary heterojunctions (BP/WS2-TM (TM: Ni, Co)) in the hydrogen evolution reaction (HER) under visible light irradiation (& lambda; > 420 nm). Ternary heterojunctions named BP/WS2-TM (TM: Ni, Co) were synthesized via a chemical reduction method, leading to the formation of an S-scheme heterojunction, in which BP acts as a reduction catalyst and WS2 serves as an oxidation catalyst. BP/WS2-Ni and BP/WS2-Co performed substantial amounts of hydrogen generation of 9.53 mmol h(-1)g(-1) and 12.13 mmol h(-1)g(-1), respectively. Moreover, BP/WS2-Co exhibited about 5 and 15 times higher photocatalytic activity compared to the binary BP/WS2 heterojunctions and pristine BP, respectively. The enhanced photocatalytic activity of the heterojunction catalysts is attributed to the extended light absorption ability, enhanced charge separation, and larger active sites. This study is the first example of photocatalytic hydrogen evolution from water by using Ni- and Co-doped binary BP/WS2 heterojunctions.
  • Placeholder
    Publication
    Transshipment network design for express air cargo operations in China
    (Elsevier B.V., 2023) Savelsbergh, Martin; Dogru, Ali K.; Department of Industrial Engineering; Yıldız, Barış; Department of Industrial Engineering; College of Engineering
    We introduce a novel multimodal (ground and air transportation) network design model with transshipments for the transport of express cargo with heterogeneous service classes (i.e., next morning delivery, and next day delivery). We formulate this problem using a novel path-based mixed-integer program which seeks to maximize the demand (weight) served. We investigate the value of the proposed transshipment network under various operational conditions and by benchmarking against a direct shipment network and a network with a single transshipment point which mimics a classical star-shaped hub-and-spoke network. Our extensive computational study with real-world data from ShunFeng (SF) Express reveals that the integration of ground and air transportation improves the coverage and that transshipment enables serving a large number of origin–destination pairs with a small number of cargo planes. Importantly, we show that by simplifying handling, i.e., employing cross-docking rather than time-consuming sortation, a transshipment network can transport express cargo fast enough to meet demanding delivery deadlines. Finally, we find that increasing the efficiency of intra-city operations and extending the nightly operating time window are the most effective operational adjustments for further improving the performance of the proposed transshipment network.
  • Placeholder
    Publication
    On maximal partial Latin hypercubes
    (Springer, 2023) Donovan, Diane M.; Grannell, Mike J.; Department of Mathematics; Yazıcı, Emine Şule; Department of Mathematics; College of Sciences
    A lower bound is presented for the minimal number of filled cells in a maximal partial Latin hypercube of dimension d and order n. The result generalises and extends previous results for d= 2 (Latin squares) and d= 3 (Latin cubes). Explicit constructions show that this bound is near-optimal for large n> d . For d> n , a connection with Hamming codes shows that this lower bound gives a related upper bound for the same quantity. The results can be interpreted in terms of independent dominating sets in certain graphs, and in terms of codes that have covering radius 1 and minimum distance at least 2.
  • Placeholder
    Publication
    Vertical individualism orientations and mental health stigma: the mediating role of belief in free will
    (Springer, 2023) Ozkok, Hazal; Altan-Atalay, Ayse; Department of Psychology; Turan, Bülent; Özkök, Maide Hazal; Department of Psychology; College of Social Sciences and Humanities; Graduate School of Social Sciences and Humanities
    Even though the stigma related to mental health is widespread, stigma related to suicide and substance use are less researched areas. This study investigates whether belief in free will mediates the association between vertical individualism and stigma against those who use substances or attempt suicide. Turkish adult participants (n = 200, M-age = 29.8, SD = 11.9) completed self-report measures of cultural orientation, belief in free will, substance use stigma, and suicide stigma. Results revealed that individuals' belief in free will mediates the association of vertical individualism with both suicide and substance use stigma. This suggests that free will belief may be one of the ways in which cultural orientations are linked to stigma. These results can contribute to the design of sophisticated stigma reduction interventions that take into account belief in free will and cultural orientation.
  • Placeholder
    Publication
    A water-soluble Irgacure 2959-based diallylammonium salt system for antibacterial coatings
    (Wiley, 2024) Balaban, Burcu; Avci, Duygu; Department of Chemistry; Güner, Pınar Tatar; Acar, Havva Funda Yağcı; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Sciences
    A water-soluble mixture of a novel diallylammonium salt photoinitiator based on 2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone (Irgacure 2959 or I2959) and diallylammonium tosylate has been prepared. It shows excellent water-solubility of 6.8 wt% in water, much greater than the solubility of I2959 (<2 wt%). It has a strong absorbance at 269 nm (epsilon similar to 15731) in methanol. It exhibits 15.6 times higher migration stability than I2959 due to its monomeric nature. Its photoinitiating efficiency of 2-hydroxyethylmethacrylate (HEMA) and poly(ethylene glycol) diacrylate (PEGDA, M-n = 575 D) was found to be similar to I2959. PEGDA hydrogels prepared using the synthesized photoinitiator (PI) were found to have highly porous structures (15.44 mu m) compared with those using I2959. PEGDA film prepared using this PI has demonstrated antibacterial properties against gram-negative Pseudomonas aeruginosa (ATCC 15442) and gram-positive Staphylococcus aureus (ATCC 23235) bacterial species.
  • Placeholder
    Publication
    Anisotropic wettability induced by femtosecond laser ablation
    (Wiley-V C H Verlag Gmbh, 2023) Yetisen, Ali K.; Department of Mechanical Engineering; Shojaeian, Mostafa; Taşoğlu, Savaş; Department of Mechanical Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Graduate School of Sciences and Engineering; College of Engineering
    Laser ablation has been utilized for locally and selectively modifying the surface wettability of materials in situ and enabling on-demand microfabrication. The anisotropic wettability has been observed on chemical and/or topographical patterns, such as an array of laser-inscribed strips with spacings, created on surfaces during the fabrication process. Herein, the effectiveness of the femtosecond laser ablation is evaluated in selectively modifying surface wettability. The areas processed by laser ablation exhibit anisotropic wetting behavior, even after the laser strips are overlapped. The laser-induced anisotropic surface wettability is present in space governed by laser scanning speed, scan/strip overlap, laser fluence, scan repetition, and bidirectional scanning angle. Moreover, the femtosecond laser ablation process is optimized to enhance the conventional laser inscription, leading to a modified and consistent methodology to achieve cost-effective fabrication. Herein, an approach for locally and selectively modifying surface wettability of materials in situ induced by femtosecond laser ablation is described. The laser-induced anisotropic surface wettability is found to appear in space governed by laser scanning speed, scan/strip overlap, laser fluence, scan repetition, and bidirectional scanning angle.