Publications without Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3
Browse
55 results
Filters
Advanced Search
Filter by
Settings
Search Results
Publication Metadata only Physics-informed and data-driven modeling of an industrial wastewater treatment plant with actual validation(PERGAMON-ELSEVIER SCIENCE LTD, 2024) Esenboga, Elif Ecem; Cosgun, Ahmet; Kusoglu, Gizem; Department of Chemical and Biological Engineering; Köksal, Ece Serenat; Asrav, Tuse; Aydın, Erdal; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; College of EngineeringData-driven modeling is essential in chemical engineering, especially in complex systems like wastewater treatment plants. Recurrent neural networks are effective for modeling parameters in wastewater treatment process such as dissolved oxygen concentration and chemical oxygen demand due to their nonlinear adaptability. However, traditional models face challenges such as the requirement for larger datasets and more frequent sampling, noisy measurements, and overfitting. To address this, physics-informed neural networks integrate physical knowledge for improved performance. In our study, we apply both approaches to a wastewater treatment plant, enhancing prediction performance. Our results demonstrate that physics-informed models perform successfully in offline and online validation, especially when standard methods fail. They maintain effectiveness without frequent updates. Yet, integrating physics-informed knowledge can introduce noise when standard methods suffice. This result points out the need for careful consideration of model choice in different scenarios.Publication Metadata only On maximal partial Latin hypercubes(Springer, 2023) Donovan, Diane M.; Grannell, Mike J.; Department of Mathematics; Yazıcı, Emine Şule; Department of Mathematics; College of SciencesA lower bound is presented for the minimal number of filled cells in a maximal partial Latin hypercube of dimension d and order n. The result generalises and extends previous results for d= 2 (Latin squares) and d= 3 (Latin cubes). Explicit constructions show that this bound is near-optimal for large n> d . For d> n , a connection with Hamming codes shows that this lower bound gives a related upper bound for the same quantity. The results can be interpreted in terms of independent dominating sets in certain graphs, and in terms of codes that have covering radius 1 and minimum distance at least 2.Publication Metadata only Complex fuzzy rough aggregation operators and their applications in EDAS for multi-criteria group decision-making(Korean Institute of Intelligent Systems, 2023) Khan, Faiz Muhammad; Bibi, Naila; Abdullah, Saleem; Ullah, Azmat; Graduate School of Sciences and EngineeringOne of the notable advantages of the complex fuzzy set is its ability to incorporate not only satisfaction and dissatisfaction but also the absence of vague information in two-dimensional scenarios. By combining a fuzzy rough set with a complex fuzzy set, this study aims to provide a powerful and versatile tool for multi-criteria group decision-making (MCGDM) in complex and uncertain situations. This approach, based on EDAS (evaluation based on distance from average solution) method allows decision-makers to consider multiple criteria, account for uncertainty and vagueness, and make informed choices based on a wider range of factors. The main goal of this study is to introduce complex fuzzy (CF) rough averaging aggregation and geometric aggregation operators and embed these operators in EDAS to obtain remarkable results in MCGDM. Furthermore, we propose the CF rough weighted averaging (CFRWA), CF rough ordered weighted averaging (CFROWA), and CF rough hybrid averaging (CFRHA) aggregation operators. Additionally, we present the concepts of CF rough weighted geometric (CFRWG), CF rough ordered weighted geometric (CFROWG), and CF rough hybrid geometric (CFRHG) aggregation operators. A new score function is defined for the proposed method. The basic and useful aspects of the explored operators were discussed in detail. Next, a stepwise algorithm of the CFR-EDAS method is demonstrated to utilize the proposed approach. Moreover, a real-life numerical problem is presented for the developed model. Finally, a comparison of the explored method with various existing methods is discussed, demonstrating that the exploring model is more effective and advantageous than existing approaches. © The Korean Institute of Intelligent SystemsPublication Metadata only QC-LDPC codes from difference matrices and difference covering arrays(IEEE-Inst Electrical Electronics Engineers Inc, 2023) Donovan, Diane M.; Rao, Asha; Üsküplü, Elif; Department of Mathematics; Yazıcı, Emine Şule; Department of Mathematics; ; College of Sciences;We give a framework that generalizes LDPC code constructions using transversal designs or related structures such as mutually orthogonal Latin squares. Our constructions offer a broader range of code lengths and codes rates. Similar earlier constructions rely on the existence of finite fields of order a power of a prime, which significantly restricts the functionality of the resulting codes. In contrast, the LDPC codes constructed here are based on difference matrices and difference covering arrays, structures that are available for any order a, resulting in LDPC codes across a broader class of parameters, notably length a(a - 1), for all even a. Such values are not possible with earlier constructions, thus establishing the novelty of these new constructions. Specifically the codes constructed here satisfy the RC constraint and for a odd, have length a(2) and rate 1 - (4a - 3)/a(2), and for a even, length a(2) - a and rate at least 1 - (4a - 6)/(a(2 )- a). When 3 does not divide a, these LDPC codes have stopping distance at least 8. When a is odd and both 3 and 5 do not divide a, our construction delivers an infinite family of QC-LDPC codes with minimum distance at least 10. We also determine lower bounds for the stopping distance of the code. Further we include simulation results illustrating the performance of our codes. The BER and FER performance of our codes over AWGN (via simulation) is at least equivalent to codes constructed previously.Publication Metadata only Kirchhoff meets Johnson: in pursuit of unconditionally secure communication(WILEY, 2024) Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Department of Electrical and Electronics Engineering; College of EngineeringNoise: an enemy to be dealt with and a major factor limiting communication system performance. However, what if there is gold in that garbage? In conventional engineering, our focus is primarily on eliminating, suppressing, combating, or even ignoring noise and its detrimental impacts. Conversely, could we exploit it similarly to biology, which utilizes noise-alike carrier signals to convey information? In this context, the utilization of noise, or noise-alike signals in general, has been put forward as a means to realize unconditionally secure communication systems in the future. In this tutorial article, we begin by tracing the origins of thermal noise-based communication and highlighting one of its significant applications for ensuring unconditionally secure networks: the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange scheme. We then delve into the inherent challenges tied to secure communication and discuss the imperative need for physics-based key distribution schemes in pursuit of unconditional security. Concurrently, we provide a concise overview of quantum key distribution schemes and draw comparisons with their KLJN-based counterparts. Finally, extending beyond wired communication loops, we explore the transmission of noise signals over-the-air and evaluate their potential for stealth and secure wireless communication systems.Publication Metadata only Equipment selection for coupling a microgrid with a power-to-gas system in the context of optimal design and operation(Elsevier Ltd, 2024) Akülker, Handan; Department of Chemical and Biological Engineering; Aydın, Erdal; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); College of EngineeringThis study proposes a one-layer deterministic Mixed-Integer Nonlinear Programming to design and schedule a PTG-integrated microgrid. The key contribution is that optimal equipment selection, design, and scheduling, considering the PTG system at the core of the problem, are determined just in a single formulation. Scenarios based on different carbon dioxide taxes and natural gas prices are investigated. Only one wind turbine farm is chosen when the carbon dioxide tax is increased from 50 $/ton to 100 $/ton. On the other hand, when the natural gas price is increased from 1.548 $/m3 to 1.72 $/m3, two wind turbine farms are selected. Solar panel arrays are not chosen in all the scenarios. Generated power by solar panels is not enough for installation despite their much lower carbon dioxide emissions and negligible operational costs. Consequently, the optimal equipment selections may change linked to the natural gas price and carbon dioxide tax.Publication Metadata only On the rate of convergence of a classifier based on a transformer encoder(IEEE-Inst Electrical Electronics Engineers Inc, 2022) Gurevych, Iryna; Kohler, Michael; Department of Computer Engineering; Şahin, Gözde Gül; Faculty Member; Department of Computer Engineering; College of Engineering; 366984Pattern recognition based on a high-dimensional predictor is considered. A classifier is defined which is based on a Transformer encoder. The rate of convergence of the misclassification probability of the classifier towards the optimal misclassification probability is analyzed. It is shown that this classifier is able to circumvent the curse of dimensionality provided the a posteriori probability satisfies a suitable hierarchical composition model. Furthermore, the difference between the Transformer classifiers theoretically analyzed in this paper and the ones used in practice today is illustrated by means of classification problems in natural language processing.Publication Metadata only Parallel computing in Asian option pricing(Elsevier Science Bv, 2007) Sak, Halis; Boduroglu, Ilkay; Department of Industrial Engineering; Özekici, Süleyman; Faculty Member; Department of Industrial Engineering; College of Engineering; 32631We discuss the use of parallel computing in Asian option pricing and evaluate the efficiency of various algorithms. We only focus on "backward-starting fixed strike" Asian options that are continuously averaged. We implement a partial differential equation (PDE) approach that involves a single state variable to price the Asian option, and implement the same methodology to price a standard European option to check for accuracy. A parabolic PDE is solved by using both explicit and Crank-Nicolson's implicit finite-difference methods. In particular, we look for algorithms designed for implementing the computations in massively parallel processors (MPP). We evaluate the performance of the algorithms by comparing the numerical results with respect to accuracy and wall-clock time of code executions. Codes are executed on a Linux PC cluster.Publication Metadata only Coarse-to-fine combinatorial matching for dense isometric shape correspondence(Wiley, 2011) N/A; Department of Computer Engineering; Sahillioğlu, Yusuf; Yemez, Yücel; PhD Student; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; 215195; 107907We present a dense correspondence method for isometric shapes, which is accurate yet computationally efficient. We minimize the isometric distortion directly in the 3D Euclidean space, i.e., in the domain where isometry is originally defined, by using a coarse-to-fine sampling and combinatorial matching algorithm. Our method does not require any initialization and aims to find an accurate solution in the minimum-distortion sense for perfectly isometric shapes. We demonstrate the performance of our method on various isometric (or nearly isometric) pairs of shapes.Publication Metadata only A bi-criteria optimization model to analyze the impacts of electric vehicles on costs and emissions(Elsevier, 2017) N/A; N/A; Department of Industrial Engineering; Kabatepe, Bora; Türkay, Metin; Master Student; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 24956Electric vehicles (EV) are emerging as a mobility solution to reduce emissions in the transportation sector. The studies environmental impact analysis of EVs in the literature are based on the average energy mix or pre-defined generation scenarios and construct policy recommendations with a cost minimization objective. However, the environmental performance of EVs depends on the source of the marginal electricity provided to the grid and single objective models do not provide a thorough analysis on the economic and environmental impacts of EVs. In this paper, these gaps are addressed by a four step methodology that analyzes the effects of EVs under different charging and market penetration scenarios. The methodology includes a bi-criteria optimization model representing the electricity market operations. The results from a real-life case analysis show that EVs decrease costs and emissions significantly compared to conventional vehicles.