Publications without Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3
Browse
5 results
Search Results
Publication Metadata only A support function based algorithm for optimization with eigenvalue constraints(Siam Publications, 2017) N/A; Department of Mathematics; Mengi, Emre; Faculty Member; Department of Mathematics; College of Sciences; 113760Optimization of convex functions subject to eigenvalue constraints is intriguing because of peculiar analytical properties of eigenvalue functions and is of practical interest because of a wide range of applications in fields such as structural design and control theory. Here we focus on the optimization of a linear objective subject to a constraint on the smallest eigenvalue of an analytic and Hermitian matrix-valued function. We propose a numerical approach based on quadratic support functions that overestimate the smallest eigenvalue function globally. the quadratic support functions are derived by employing variational properties of the smallest eigenvalue function over a set of Hermitian matrices. We establish the local convergence of the algorithm under mild assumptions and deduce a precise rate of convergence result by viewing the algorithm as a fixed point iteration. the convergence analysis reveals that the algorithm is immune to the nonsmooth nature of the smallest eigenvalue. We illustrate the practical applicability of the algorithm on the pseudospectral functions.Publication Metadata only On the anticyclotomic Iwasawa theory of CM forms at supersingular primes(European Mathematical Soc, 2015) Department of Mathematics; Büyükboduk, Kazım; Faculty Member; Department of Mathematics; College of Sciences; N/AIn this paper, we study the anticyclotomic Iwasawa theory of a CM form f of even weight w >= 2 at a supersingular prime, generalizing the results in weight 2, due to Agboola and Howard. In due course, we are naturally lead to a conjecture on universal norms that generalizes a theorem of Perrin-Riou and Berger and another that generalizes a conjecture of Rubin (the latter seems linked to the local divisibility of Heegner points). Assuming the truth of these conjectures, we establish a formula for the variation of the sizes of the Selmer groups attached to the central critical twist of f as one climbs up the anticyclotomic tower. We also prove a statement which may be regarded as a form of the anticyclotomic main conjecture (without p-adic L-functions) for the central critical twist of f.Publication Metadata only Number of least area planes in gromov hyperbolic 3-spaces(American Mathematical Society (AMS), 2010) Department of Mathematics; Coşkunüzer, Barış; Faculty Member; Department of Mathematics; College of Sciences; N/AWe show that for a generic simple closed curve Gamma in the asymptotic boundary of a Gromov hyperbolic 3-space with cocompact metric X, there exists a unique least area plane Sigma in X such that partial derivative(infinity)Sigma = Gamma. This result has interesting topological applications for constructions of canonical 2-dimensional objects in Gromov hyperbolic 3-manifolds.Publication Metadata only Big Heegner point Kolyvagin system for a family of modular forms(Springer International Publishing Ag, 2014) Department of Mathematics; Büyükboduk, Kazım; Faculty Member; Department of Mathematics; College of Sciences; N/AThe principal goal of this paper is to develop Kolyvagin's descent to apply with the big Heegner point Euler system constructed by Howard for the big Galois representation attached to a Hida family of elliptic modular forms. In order to achieve this, we interpolate and control the Tamagawa factors attached to each member of the family at bad primes, which should be of independent interest. Using this, we then work out the Kolyvagin descent on the big Heegner point Euler system so as to obtain a big Kolyvagin system that interpolates the collection of Kolyvagin systems obtained by Fouquet for each member of the family individually. This construction has standard applications to Iwasawa theory, which we record at the end.Publication Metadata only Generic uniqueness of area minimizing disks for extreme curves(Johns Hopkins Univ Press, 2010) Department of Mathematics; Coşkunüzer, Barış; Faculty Member; Department of Mathematics; College of Sciences; N/AWe show that for a generic nullhomotopic simple closed curve Gamma in the boundary of a compact, orientable. mean convex 3-manifold M with H-2(M, Z) = 0. there is a unique area minimizing disk D embedded in M with partial derivative D = Gamma. We also show that the same is true for nullhomologous curves in the absolutely area minimizing surface case.