Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 98
  • Placeholder
    Publication
    Resonant channel-dropping filter with integrated detector system based on optical fiber coupler and microsphere
    (IOP Publications, 2004) İşci, Şenol; Yılmaz, Yiğit; Department of Physics; Serpengüzel, Ali; Kurt, Adnan; Bilici, Temel; Faculty Member; Teaching Faculty; N/A; Department of Physics; College of Sciences; N/A; 27855; 194455; N/A
  • Placeholder
    Publication
    Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip
    (Institute of Physics (IOP) Publishing, 2016) Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R. T.; Peeters, F. M.; Zareie, H. M.; N/A; Birer, Özgür; Researcher; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A
    We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.
  • Placeholder
    Publication
    Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment
    (Elsevier Science Bv, 2018) Soydan, Seren; Jonas, Alexander; N/A; Department of Chemistry; N/A; Department of Chemistry; Department of Physics; Department of Chemistry; Rashid, Muhammed Zeeshan; Atay, İpek; Yağcı, Mustafa Barış; Yılgör, Emel; Kiraz, Alper; Yılgör, İskender; PhD Student; Post Doctorate Student; Researcher; Researcher; Faculty Member; Faculty Member; Department of Physics; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; N/A; College of Sciences; College of Sciences; College of Sciences; College of Sciences; N/A; N/A; N/A; N/A; 40527; 22542; 24181
    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications. (C) 2018 Elsevier B.V. All rights reserved.
  • Placeholder
    Publication
    Effect of thermal lensing on the mode matching between pump and laser beams in Cr4+: forsterite lasers: a numerical study
    (IOP Publishing, 2000) Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851
    The numerical study presented in this paper investigates the role of thermal lensing on the mode matching between the pump beam and the cavity beam in continuous-wave end-pumped Cr4+:forsterite lasers. A suitable mode overlap function was first derived to calculate the degree of overlap between the pump beam and the fundamental mode of the resonator. The effect of thermal lensing on mode matching was then numerically investigated by calculating the changes in the average value of the mode overlap function due to variations in pump power and crystal boundary temperature. Thermal lensing was taken into account by calculating the pump-induced thermal gradients and by approximating the gain medium as a distributed quadratic lens. Finally, the model was used to offer guidelines about how one of the resonator lenses should be readjusted in order to maintain optimum mode matching as the boundary temperature and pump power are varied.
  • Placeholder
    Publication
    Chaos in rotating triatomic clusters
    (Editions Physique, 1997) Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    Lyapunov exponent distributions of rotating triatomic Lennard-Jones clusters are calculated to analyze the effects of the vibrational and rotational motion on the extent of chaotic behavior. Initial momentum components are assigned to atoms either to rotate the clusters around symmetry axes or to generate random angular momenta. In both cases, it is seen that the initial kinetic energy assigned to vibrational modes is the dominant factor which determines the degree of chaos.
  • Placeholder
    Publication
    Exactly solvable pairing model using an extension of the Richardson-Gaudin approach
    (World Scientific Publ Co Pte Ltd, 2005) Balantekin, AB; Pehlivan, Y; Department of Physics; Dereli, Tekin; Faculty Member; Department of Physics; College of Sciences; 201358
    We introduce a new class of exactly solvable boson pairing models using the technique of Richardson and Gaudin. Analytical expressions for all energy eigenvalues and the first few energy eigenstates are given. In addition, another solution to Gaudin's equation is also mentioned. A relation with the Calogero-Sutherland model is suggested.
  • Placeholder
    Publication
    High average-power diode-pumped femtosecond Cr3+: LiCAF laser
    (Association for Computational Linguistics, 2008) Kärtner, Franz X.; Fujimoto, James G.; Demirbaş, Ümit; Benedick, Andrew; Siddiqui, Aleem; Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851
    67-fs pulses with an average power of 300 mW and pulse repetition rate of 120 MHz were obtained from a diode-pumped Cr3+: PLiCAF laser. A semiconductor saturable absorber mirror enabled stable and self-starting mode-locked operation.
  • Placeholder
    Publication
    Unified trade-off optimization of quantum harmonic otto engine and refrigerator
    (American Physical Society (APS), 2022) Singh, Varinder; Singh, Satnam; Abah, Obinna; Department of Physics; Müstecaplıoğlu, Özgür Esat; Faculty Member; Department of Physics; College of Sciences; 1674
    We investigate quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator operating under the conditions of maximum Q function, a trade-off objective function which represents a compromise between energy benefits and losses for a specific job, for both adiabatic and nonadiabatic (sudden) frequency modulations. We derive analytical expressions for the efficiency and coefficient of performance of the Otto cycle. For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto engine (refrigerator) can be mapped to Feynman's ratchet and pawl model which is a steady-state classical heat engine. For the sudden switch of frequencies, we obtain loop-like behavior of the efficiency-work curve, which is characteristic of irreversible heat engines. Finally, we discuss the behavior of cooling power at maximum Q function.
  • Placeholder
    Publication
    Understanding fundamental trade-offs in nanomechanical resonant sensors
    (Amer Inst Physics, 2021) Department of Electrical and Electronics Engineering; Demir, Alper; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 3756
  • Placeholder
    Publication
    Design principles of q-preserving multipass-cavity femtosecond lasers
    (The Optical Society (OSA) Publishing, 2006) Kowalevicz, A.M.; Zare, A.T.; Fujimoto, J.G.; Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851
    We describe a new class of femtosecond laser cavity designs that are based on a Herriott-type multipass cavity (MPC) to effectively increase the length of a standard laser resonator. MPC laser designs can be used to increase the output pulse energies or to make more compact resonator configurations. A general theory for MPC lasers is developed by analyzing a periodic optical system, and the conditions are established for the case in which the q parameter of a Gaussian beam is left invariant after a single transit through the system. On the basis of this analysis, we determine the design criteria for two-mirror q-preserving MPCs. Practical laser cavity choices are presented and their trade-offs are examined. We also discuss various experimental setups that use these novel MPC designs to increase pulse energies while maintaining compact cavities.