Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
1 results
Search Results
Publication Open Access Virulence determinants of colistin-resistant K. pneumoniae high-risk clones(Multidisciplinary Digital Publishing Institute (MDPI), 2021) Department of Industrial Engineering; Department of Industrial Engineering; Ergönül, Önder; Gönen, Mehmet; Can, Füsun; Doğan, Özlem; Vatansever, Cansel; Ataç, Nazlı; Albayrak, Özgür; Karahüseyinoğlu, Serçin; Şahin, Özgün Ekin; Kılıçoğlu, Bilge Kaan; Demiray, Atalay; Faculty Member; Faculty Member; Faculty Member; Faculty Member; Undergraduate Student; Researcher; Faculty Member; Master Student; School of Medicine; Graduate School of Health Sciences; College of Engineering; 110398; 237468; 103165; 170418; N/A; N/A; N/A; 110772; N/A; N/A; N/AWe proposed the hypothesis that high-risk clones of colistin-resistant K. pneumoniae (ColR-Kp) possesses a high number of virulence factors and has enhanced survival capacity against the neutrophil activity. We studied virulence genes of ColR-Kp isolates and neutrophil response in 142 patients with invasive ColR-Kp infections. The ST101 and ST395 ColR-Kp infections had higher 30-day mortality (58%, p = 0.005 and 75%, p = 0.003). The presence of yersiniabactin biosynthesis gene (ybtS) and ferric uptake operon associated gene (kfu) were significantly higher in ST101 (99%, p <= 0.001) and ST395 (94%, p < 0.012). Being in ICU (OR: 7.9; CI: 1.43-55.98; p = 0.024), kfu (OR:27.0; CI: 5.67-179.65; p < 0.001) and ST101 (OR: 17.2; CI: 2.45-350.40; p = 0.01) were found to be predictors of 30-day mortality. Even the neutrophil uptake of kfu+-ybtS+ ColR-Kp was significantly higher than kfu--ybtS- ColR-Kp (phagocytosis rate: 78% vs. 65%, p < 0.001), and the kfu+-ybtS+ ColR-Kp survived more than kfu--ybtS- ColR-Kp (median survival index: 7.90 vs. 4.22; p = 0.001). The kfu+-ybtS+ ColR-Kp stimulated excessive NET formation. Iron uptake systems in high-risk clones of colistin-resistant K. pneumoniae enhance the success of survival against the neutrophil phagocytic defense and stimulate excessive NET formation. The drugs targeted to iron uptake systems would be a promising approach for the treatment of colistin-resistant high-risk clones of K. pneumoniae infections.