Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
230 results
Search Results
Publication Open Access Dirac equation in spacetimes with non-metricity and Torsion(World Scientific Publishing, 2003) Adak, M.; Ryder, L.H.; Department of Physics; Department of Physics; Dereli, Tekin; PhD Student; Faculty Member; College of Sciences; 201358Dirac equation is written in a non-Riemannian spacetime with torsion and non-metricity by lifting the connection from the tangent bundle to the spinor bundle over spacetime. Foldy-Wouthuysen transformation of the Dirac equation in a Schwarzschild background spacetime. is considered. and it is shown that both the torsion and non-metricity couples to the momentum and spin of a massive, spinning particle. However, the effects are small to be observationally significant.Publication Open Access BCS theory of time-reversal-symmetric Hofstadter-Hubbard model(American Physical Society (APS), 2017) Umucalılar, Rıfat Onur; Department of Physics; Department of Physics; Işkın, Menderes; Faculty Member; College of Sciences; 29659The competition between the length scales associated with the periodicity of a lattice potential and the cyclotron radius of a uniform magnetic field is known to have dramatic effects on the single-particle properties of a quantum particle, e.g., the fractal spectrum is known as the Hofstadter butterfly. Having this intricate competition in mind, we consider a two-component Fermi gas on a square optical lattice with opposite synthetic magnetic fields for the components, and study its effects on the many-body BCS-pairing phenomenon. By a careful addressing of the distinct superfluid transitions from the semimetal, quantum spin-Hall insulator, or normal phases, we explore the low-temperature phase diagrams of the model, displaying lobe structures that are reminiscent of the well-known Mott-insulator transitions of the Bose-Hubbard model.Publication Open Access Topological superfluid phases of an atomic Fermi gas with in- and out-of-plane Zeeman fields and equal Rashba-Dresselhaus spin-orbit coupling(American Physical Society (APS), 2013) Subaşı, Ahmet Levent; Department of Physics; Department of Physics; Işkın, Menderes; Faculty Member; College of Sciences; 29659We analyze the effects of in-and out-of-plane Zeeman fields on the BCS-Bose-Einstein condensation (BEC) evolution of a Fermi gas with equal Rashba-Dresselhaus (ERD) spin-orbit coupling (SOC). We show that the ground state of the system involves gapless superfluid phases that can be distinguished with respect to the topology of the momentum-space regions with zero excitation energy. For the BCS-like uniform superfluid phases with zero center-of-mass momentum, the zeros may correspond to one or two doubly degenerate spheres, two or four spheres, two or four concave spheroids, or one or two doubly degenerate circles, depending on the combination of Zeeman fields and SOC. Such changes in the topology signal a quantum phase transition between distinct superfluid phases and leave their signatures on some thermodynamic quantities. We also analyze the possibility of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like nonuniform superfluid phases with finite center-of-mass momentum and obtain an even richer phase diagram.Publication Open Access Dynamical properties of a coupled nonlinear dielectric waveguide-surface-plasmon system as another type of Josephson junction(Society of Photo-optical Instrumentation Engineers (SPIE), 2011) Department of Physics; Department of Physics; Özok, Yasa Ekşioğlu; Müstecaplıoğlu, Özgür Esat; Güven, Kaan; Faculty Member; Faculty Member; College of Sciences; N/A; 1674; 52290We demonstrate that a weakly-coupled nonlinear dielectric waveguide surface-plasmon (DWSP-JJ) system can be formulated in analogy to bosonic Josephson junction of atomic condensates at very low temperatures, yet it exhibits different dynamical features. Such a system can be realized along a metal - dielectric interface where the dielectric medium hosts a nonlinear waveguide (e. g. fiber) for soliton propagation. The inherently dynamic coupling parameter generates novel features in the phase space.Publication Open Access Power performance of a continuous-wave Cr2+:ZnSe laser at 2.4 7 ?m(Optica Publishing Group, 2000) Pollock, C.R.; Department of Physics; Department of Physics; Sennaroğlu, Alphan; Konca, Ali Özgün; Faculty Member; Undergraduate Student; College of Sciences; 23851; N/AContinuous-wave power performance of a Cr2+:znSe laser was investigated at 2.474 ?m. End pumped by a 1.583-?m NaCl:OH- laser, the resonator with a 3% transmitting output coupler produced as high as 250 mW of output power with a slope efficiency of 24.2%. Analysis of the laser efficiency data shows that the magnitude of the excited-state absorption cross section is less than 5% of the emission cross section in agreement with spectroscopic results. Numerical calculations further predict the optimum crystal length and absorption coefficient to be 2.5 cm and 0.49 cm-1, respectively, for continuous-wave operation.Publication Open Access Chaotic spin correlations in frustrated Ising hierarchical lattices(American Physical Society (APS), 2009) Berker, A. Nihat; Department of Physics; Department of Physics; Aral, Neşe; College of SciencesSpin-spin correlations are calculated in frustrated hierarchical Ising models that exhibit chaotic renormalization-group behavior. The spin-spin correlations, as a function of distance, behave chaotically. The far correlations, but not the near correlations, are sensitive to small changes in temperature or frustration, with temperature changes having a larger effect. On the other hand, the calculated free energy, internal energy, and entropy are smooth functions of temperature. The recursion-matrix calculation of thermodynamic densities in a chaotic band is demonstrated. The leading Lyapunov exponents are calculated as a function of frustration.Publication Open Access Macroscopic loop formation in circular DNA denaturation(American Physical Society (APS), 2012) Bar, Amir; Mukamel, David; Department of Physics; Department of Physics; Kabakçıoğlu, Alkan; Faculty Member; College of Sciences; 49854The statistical mechanics of DNA denaturation under fixed linking number is qualitatively different from that of unconstrained DNA. Quantitatively different melting scenarios are reached from two alternative assumptions, namely, that the denatured loops are formed at the expense of (i) overtwist or (ii) supercoils. Recent work has shown that the supercoiling mechanism results in a picture similar to Bose-Einstein condensation where a macroscopic loop appears at T-c and grows steadily with temperature, while the nature of the denatured phase for the overtwisting case has not been studied. By extending an earlier result, we show here that a macroscopic loop appears in the overtwisting scenario as well. We calculate its size as a function of temperature and show that the fraction of the total sum of microscopic loops decreases above T-c, with a cusp at the critical point.Publication Open Access A divergence-free parametrization for dynamical dark energy(Institute of Physics (IOP) Publishing, 2015) Vazquez, J. Alberto; Department of Physics; Department of Physics; Dereli, Tekin; Akarsu, Özgür; Faculty Member; College of Sciences; 201358; N/AWe introduce a new parametrization for the dark energy, led by the same idea to the linear expansion of the equation of state in scale factor a and in redshift z, which diverges neither in the past nor future and contains the same number of degrees of freedom with the former two. We present constraints of the cosmological parameters using the most updated baryon acoustic oscillation (BAO) measurements along with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. This new parametrization allowed us to carry out successive observational analyses by decreasing its degrees of freedom systematically until ending up with a dynamical dark energy model that has the same number of parameters with ACDM. We found that the dark energy source with a dynamical equation of state parameter equal 2/3 at the early universe and -1 today fits the data slightly better than A.Publication Open Access Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance(American Physical Society (APS), 2016) Department of Physics; Department of Physics; Işkın, Menderes; Faculty Member; College of Sciences; 29659We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth Yb-173 Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s-wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called pi-phase) solutions in the entire BCS-BEC evolution at zero temperature.Publication Open Access Discrete-time quantum walk with nitrogen-vacancy centers in diamond coupled to a superconducting flux qubit(American Physical Society (APS), 2013) Xue, Peng; Shikano, Yutaka; Sanders, Barry C.; Department of Physics; Department of Physics; Hardal, Ali Ümit Cemal; Müstecaplıoğlu, Özgür Esat; Faculty Member; Graduate School of Sciences and Engineering; College of Sciences; N/A; 1674We propose a quantum-electrodynamics scheme for implementing the discrete-time, coined quantum walk with the walker corresponding to the phase degree of freedom for a quasimagnon field realized in an ensemble of nitrogen-vacancy centers in diamond. The coin is realized as a superconducting flux qubit. Our scheme improves on an existing proposal for implementing quantum walks in cavity quantum electrodynamics by removing the cumbersome requirement of varying drive-pulse durations according to mean quasiparticle number. Our improvement is relevant to all indirect-coin-flip cavity quantum-electrodynamics realizations of quantum walks. Our numerical analysis shows that this scheme can realize a discrete quantum walk under realistic conditions.