Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 10 of 64
  • Thumbnail Image
    PublicationOpen Access
    Emergence of near-infrared photoluminescence via ZnS shell growth on the AgBiS2 nanocrystals
    (American Chemical Society, 2024) Department of Chemistry; Department of Electrical and Electronics Engineering; Önal, Asım; Kaya, Tarık Safa; Metin, Önder; Nizamoğlu, Sedat; Department of Chemistry; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering
    AgBiS2 nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>105 cm(-1)), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS2 NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS2 NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine. Next, a zincblende ZnS shell with a low-lattice mismatch of 4.9% was grown on as-prepared AgBiS2 NCs via a highly reactive zinc (Zn(acac)(2)) precursor that led to a higher photoluminescence quantum yield (PLQY) of 15.3%, in comparison with a relatively low reactivity precursor (Zn(ac)(2)) resulting in reduced PLQY. The emission from AgBiS2 NCs with ultrastrong absorption, facilitated by shell growth, can open up new possibilities in lighting, display, and bioimaging.
  • Thumbnail Image
    PublicationOpen Access
    Large-scale computational screening of MOF membranes and MOF-based polymer membranes for H2/N2 separations
    (American Chemical Society (ACS), 2019) Department of Chemical and Biological Engineering; Azar, Ayda Nemati Vesali; Velioğlu, Sadiye; Keskin, Seda; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; N/A; 200650; 40548
    Several thousands of metal organic frameworks (MOFs) have been reported to date, but the information on H-2/N-2 separation performances of MOF membranes is currently very limited in the literature. We report the first large-scale computational screening study that combines state-of-the-art molecular simulations, grand canonical Monte Carlo (GCMC) and molecular dynamics (MD), to predict H-2 permeability and H-2/N-2 selectivity of 3765 different types of MOF membranes. Results showed that MOF membranes offer very high H-2 permeabilities, 2.5 x 10(3) to 1.7 x 10(6) Barrer, and moderate H-2/N-2 membrane selectivities up to 7. The top 20 MOF membranes that exceed the polymeric membranes' upper bound for H-2/N-2 separation were identified based on the results of initial screening performed at infinite dilution condition. Molecular simulations were then carried out considering binary H-2/N-2 and quaternary H-2/N-2/CO2/CO mixtures to evaluate the separation performance of MOF membranes under industrial operating conditions. Lower H-2 permeabilities and higher N-2 permeabilities were obtained at binary mixture conditions compared to the ones obtained at infinite dilution due to the absence of multicomponent mixture effects in the latter. Structure performance relations of MOFs were also explored to provide molecular-level insights into the development of new MOF membranes that can offer both high H-2 permeability and high H-2/N-2 selectivity. Results showed that the most promising MOF membranes generally have large pore sizes (>6 A) as well as high surface areas (>3500 m(2)/g) and high pore volumes (>1 cm(3)/g). We finally examined H-2/N-2 separation potentials of the mixed matrix membranes (MMMs) in which the best MOF materials identified from our high-throughput screening were used as fillers in various polymers. Results showed that incorporation of MOFs into polymers almost doubles H-2 permeabilities and slightly enhances H-2/N-2 selectivities of polymer membranes, which can advance the current membrane technology for efficient H-2 purification.
  • Thumbnail Image
    PublicationOpen Access
    Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems
    (American Institute of Physics (AIP) Publishing, 1999) Rabitz, H. A.; Department of Mathematics; Aşkar, Attila; Faculty Member; Department of Mathematics; College of Sciences; N/A; 178822
    This paper considers the practical utility of quantum fluid dynamics (QFD) whereby the time-dependent Schrodinger's equation is transformed to observing the dynamics of an equivalent "gas continuum." The density and velocity of this equivalent gas continuum are respectively the probability density and the gradient of the phase of the wave function. The numerical implementation of the QFD equations is carried out within the Lagrangian approach, which transforms the solution of Schrodinger's equation into following the trajectories of a set of mass points, i.e., subparticles, obtained by discretization of the continuum equations. The quantum dynamics of the subparticles which arise in the present formalism through numerical discretization are coupled by the density and the quantum potential. Numerical illustrations are performed for photodissociation of nocl and NO2 treated as two-dimensional models. The dissociation cross sections sigma(omega) are evaluated in the dramatically short CPU times of 33 s for nocl and 40 s for NO2 on a Pentium-200 mhz PC machine. The computational efficiency comes from a combination of (a) the QFD representation dealing with the near monotonic amplitude and phase as dependent variables, (b) the Lagrangian description concentrating the computation effort at all times into regions of highest probability as an optimal adaptive grid, and (c) the use of an explicit time integrator whereby the computational effort grows only linearly with the number of discrete points.
  • Thumbnail Image
    PublicationOpen Access
    Electronic structure of atomically dispersed supported iridium catalyst controls iridium aggregation
    (American Chemical Society (ACS), 2020) Hoffman, Adam S.; Akgül, Deniz; Babucci, Melike; Aviyente, Viktorya; Gates, Bruce C.; Bare, Simon R.; Department of Chemical and Biological Engineering; Öztulum, Samira Fatma Kurtoğlu; Uzun, Alper; Faculty Member; Department of Chemical and Biological Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 59917
    Supported iridium complexes, Ir(C2H4)2/support, were characterized by X-ray absorption spectroscopy during a temperature ramp to 120 °C in flowing H2. Iridium in complexes bonded to weak and moderate electron-donor supports, SiO2and ?-Al2O3, underwent aggregation, forming nanoparticles and clusters, respectively. When the support was a strong electron-donor (MgO), iridium remained site-isolated. Density functional theory calculations confirm the dependence of iridium-support bond strength on the support's electron-donor character. Coating the SiO2-supported complexes with 1- n-ethyl-3-methyl-imidazolium acetate enhanced electron density on the iridium, hindering its aggregation. These results demonstrate opportunities for stabilizing atomically dispersed supported noble metals under reducing conditions by choice of support/ionic liquid sheath combinations.
  • Thumbnail Image
    PublicationOpen Access
    Effect of MOF database selection on the assessment of gas storage and separation potentials of MOFs
    (Wiley, 2021) Eruçar, İlknur; Department of Chemical and Biological Engineering; N/A; Harman, Hilal Dağlar; Gülbalkan, Hasan Can; Aksu, Gökhan Önder; Altundal, Ömer Faruk; Altıntaş, Çiğdem; Avcı, Gökay; Keskin, Seda; Researcher; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; 40548
    Development of computation‐ready metal–organic framework databases (MOF DBs) has accelerated high‐throughput computational screening (HTCS) of materials to identify the best candidates for gas storage and separation. These DBs were constructed using structural curations to make MOFs directly usable for molecular simulations, which caused the same MOF to be reported with different structural features in different DBs. We examined thousands of common materials of the two recently updated, very widely used MOF DBs to reveal how structural discrepancies affect simulated CH4, H2, CO2 uptakes and CH4/H2 separation performances of MOFs. Results showed that DB selection has a significant effect on the calculated gas uptakes and ideal selectivities of materials at low pressure. A detailed analysis on the curated structures was provided to isolate the critical elements of MOFs determining the gas uptakes. Identification of the top‐performing materials for gas separation was shown to strongly depend on the DB used in simulations.
  • Thumbnail Image
    PublicationOpen Access
    Epitranscriptomics of ischemic heart disease-the IHD-EPITRAN study design and objectives
    (Multidisciplinary Digital Publishing Institute (MDPI), 2021) Sikorski, Vilbert; Karjalainen, Pasi; Blokhina, Daria; Oksaharju, Kati; Khan, Jahangir; Katayama, Shintaro; Rajala, Helena; Suihko, Satu; Tuohinen, Suvi; Teittinen, Kari; Nummi, Annu; Nykanen, Antti; Eskin, Arda; Stark, Christoffer; Biancari, Fausto; Kiss, Jan; Simpanen, Jarmo; Ropponen, Jussi; Lemstrom, Karl; Savinainen, Kimmo; Lalowski, Maciej; Kaarne, Markku; Jormalainen, Mikko; Elomaa, Outi; Koivisto, Pertti; Raivio, Peter; Backstrom, Pia; Dahlbacka, Sebastian; Syrjala, Simo; Vainikka, Tiina; Vahasilta, Tiina; Karelson, Mati; Mervaala, Eero; Juvonen, Tatu; Laine, Mika; Laurikka, Jari; Vento, Antti; Kankuri, Esko; Department of Chemical and Biological Engineering; Tunçbağ, Nurcan; Faculty Member; Department of Chemical and Biological Engineering; School of Medicine; College of Engineering; 245513
    Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m(6)A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m(6)A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m(6)A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.
  • Thumbnail Image
    PublicationOpen Access
    Comprehensive research on past and future therapeutic strategies devoted to treatment of amyotrophic lateral sclerosis
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Sever, Belgin; Sever, Hilal; Ocak, Firdevs; Yuluğ, Burak; Tateishi, Hiroshi; Tateishi, Takahisa; Otsuka, Masami; Mikako, Fujita; Department of Molecular Biology and Genetics; Başak, Ayşe Nazlı; Çiftçi, Halil İbrahim; Demirci, Hasan; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Sciences; 1512; N/A; 307350
    Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
  • Thumbnail Image
    PublicationOpen Access
    Biocompatible quantum funnels for neural photostimulation
    (American Chemical Society (ACS), 2019) N/A; Department of Chemical and Biological Engineering; N/A; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; N/A; Jalali, Houman Bahmani; Doğru-Yüksel, Itır Bakış; Eren, Güncem Özgün; Nizamoğlu, Sedat; Karatüm, Onuralp; Melikov, Rustamzhon; Dikbaş, Uğur Meriç; Kavaklı, İbrahim Halil; Sadeghi, Sadra; Yıldız, Erdost; Ergün, Çağla; Şahin, Afsun; PhD Student; Faculty Member; PhD Student; Master Student; Faculty Member; PhD Student; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; School of Medicine; N/A; N/A; N/A; 130295; N/A; N/A; N/A; 40319; N/A; N/A; N/A; 171267
    Neural photostimulation has high potential to understand the working principles of complex neural networks and develop novel therapeutic methods for neurological disorders. A key issue in the light-induced cell stimulation is the efficient conversion of light to bioelectrical stimuli. In photosynthetic systems developed in millions of years by nature, the absorbed energy by the photoabsorbers is transported via nonradiative energy transfer to the reaction centers. Inspired by these systems, neural interfaces based on biocompatible quantum funnels are developed that direct the photogenerated charge carriers toward the bionanojunction for effective photostimulation. Funnels are constructed with indium-based rainbow quantum dots that are assembled in a graded energy profile. Implementation of a quantum funnel enhances the generated photoelectrochemical current 215% per unit absorbance in comparison with ungraded energy profile in a wireless and free-standing mode and facilitates optical neuromodulation of a single cell. This study indicates that the control of charge transport at nanoscale can lead to unconventional and effective neural interfaces.
  • Thumbnail Image
    PublicationOpen Access
    Wireless MRI-powered reversible orientation-locking capsule robot
    (Wiley, 2021) Erin, Önder; Boyvat, Mustafa; Lazovic, Jelena; Tiryaki, Mehmet Efe; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104
    Magnetic resonance imaging (MRI) scanners do not provide only high-resolution medical imaging but also magnetic robot actuation and tracking. However, the rotational motion capabilities of MRI-powered wireless magnetic capsule-type robots have been limited due to the very high axial magnetic field inside the MRI scanner. Medical functionalities of such robots also remain a challenge due to the miniature robot designs. Therefore, a wireless capsule-type reversible orientation-locking robot (REVOLBOT) is proposed that has decoupled translational motion and planar orientation change capability by locking and unlocking the rotation of a spherical ferrous bead inside the robot on demand. Such an on-demand locking/unlocking mechanism is achieved by a phase-changing wax material in which the ferrous bead is embedded inside. Controlled and on-demand hyperthermia and drug delivery using wireless power transfer-based Joule heating induced by external alternating magnetic fields are the additional features of this robot. The experimental feasibility of the REVOLBOT prototype with steerable navigation, medical function, and MRI tracking capabilities with an 1.33 Hz scan rate is demonstrated inside a preclinical 7T small-animal MRI scanner. The proposed robot has the potential for future clinical use in teleoperated minimally invasive treatment procedures with hyperthermia and drug delivery capabilities while being wirelessly powered and monitored inside MRI scanners.nd. Such an on-demand locking/unlocking mechanism is achieved by a phase-changing wax material in which the ferrous bead is embedded inside. Controlled and on-demand hyperthermia and drug delivery using wireless power transfer-based Joule heating induced by external alternating magnetic fields are the additional features of this robot. The experimental feasibility of the REVOLBOT prototype with steerable navigation, medical function, and MRI tracking capabilities with an 1.33 Hz scan rate is demonstrated inside a preclinical 7T small-animal MRI scanner. The proposed robot has the potential for future clinical use in teleoperated minimally invasive treatment procedures with hyperthermia and drug delivery capabilities while being wirelessly powered and monitored inside MRI scanners.
  • Thumbnail Image
    PublicationOpen Access
    One-step aqueous synthesis of anionic and cationic AgInS2 quantum dots and their utility in improving the efficacy of ALA-based photodynamic therapy
    (American Chemical Society (ACS), 2022) Loizidou, Marilena; MacRobert, Alexander J.; Department of Chemistry; Acar, Havva Funda Yağcı; Hashemkhani, Mahshid; PhD Student; Department of Chemistry; College of Sciences; Graduate School of Sciences and Engineering; 178902; N/A
    Silver-indium-sulfide quantum dots (AIS QDs) have potential applications in many areas, including biomedicine. Their lack of regulated heavy metals, unlike many commercialized QDs, stands out as an advantage, but the necessity for alloyed or core-shell structures and related costly and sophisticated processes for the production of stable and high quantum yield aqueous AIS QDs are the current challenges. The present study demonstrates the one-step aqueous synthesis of simple AgInS2 QD compositions utilizing for the first time either a polyethyleneimine/2-mercaptopropionic acid (AIS-PEI/2MPA) mixture or only 2-mercaptopropionic acid (AIS-2MPA) as the stabilizing molecules, providing a AgInS2 portfolio consisting of cationic and anionic AIS QDs, respectively, and tuneable emission. Small AIS QDs with long-term stability and high quantum yields (19-23%) were achieved at a molar ratio of Ag/In/S 1/10/10 in water without any dopant or a semiconductor shell. The theranostic potential of these cationic and anionic AIS QDs was also evaluated in vitro. Non-toxic doses were determined, and fluorescence imaging potential was demonstrated. More importantly, these QDs were electrostatically loaded with zwitterionic 5-aminolevulinic acid (ALA) as a prodrug to enhance the tumor availability of ALA and to improve ALA-induced porphyrin photodynamic therapy (PDT). This is the first study investigating the influence of nanoparticle charge on ALA binding, release, and therapeutic efficacy. Surface charge was found to be more critical in cellular internalization and dark toxicity rather than drug loading and release. Both QDs provided enhanced ALA release at acidic pH but protected the prodrug at physiological pH, which is critical for tumor delivery of ALA, which suffers from low bioavailability. The PDT efficacy of the ALA-loaded AIS QDs was tested in 2D monolayers and 3D constructs of HT29 and SW480 human colon adenocarcinoma cancer cell lines. The incorporation of ALA delivery by the AIS QDs, which on their own do not cause phototoxicity, elicited significant cell death due to enhanced light-induced ROS generation and apoptotic/necrotic cell death, reducing the IC50 for ALA dramatically to about 0.1 and 0.01 mM in anionic and cationic AIS QDs, respectively. Combined with simple synthetic methods, the strong intracellular photoluminescence of AIS QDs, good biocompatibility of especially the anionic AIS QDs, and the ability to act as drug carriers for effective PDT signify that the AIS QDs, in particular AIS-2MPA, are highly promising theranostic QDs.