Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    PublicationOpen Access
    Index modulation aided subcarrier mapping for dual-hop OFDM relaying
    (Institute of Electrical and Electronics Engineers (IEEE), 2019) Wen, Miaowen; Chen, Xuan; Wu, Yik-Chung; Zhang, Wensong; Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 149116
    There is a recent surge of research interest in the study of performance-enhancing techniques for orthogonal frequency division multiplexing (OFDM)-based relay systems. Among those, subcarrier mapping has been verified to be an effective one for boosting the system capacity and improving the error performance. However, it has to be performed at the relay, which subsequently conveys the subcarrier permutation information to the destination. The existing signaling scheme occupies a portion of subcarriers to this end, leading to a loss of spectral efficiency. In this paper, we propose a novel signaling scheme to eliminate this overhead by transferring the subcarrier permutation to the mode permutation that can be implicitly conveyed without consuming additional spectrum resources. We adopt phase rotation for mode design considering both non-adaptive and adaptive modulation, and illustrate the proposed scheme by taking the dual-hop OFDM relaying with semi-blind amplify-and-forward protocol as an example. An asymptotically tight upper bound on the bit error rate (BER) of the proposed scheme is derived in closed-form over Rayleigh fading channels. BER simulation results validate the analysis and show that the proposed scheme asymptotically approaches the ideal case that assumes perfect knowledge of subcarrier permutation information at the destination and significantly outperforms the existing scheme in the asymptotic signal-to-noise ratio region at the same spectral efficiency.
  • Thumbnail Image
    PublicationOpen Access
    Channel sensing in molecular communications with single type of ligand receptors
    (Institute of Electrical and Electronics Engineers (IEEE), 2019) Kuşcu, Murat; Department of Electrical and Electronics Engineering; Akan, Özgür Barış; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering
    Molecular communication (MC) uses molecules as information carriers between nanomachines. MC channel in practice can be crowded with different types of molecules, i.e., ligands, which can have similar binding properties causing severe cross-talk on ligand receptors. Simultaneous sensing of multiple ligand types provides opportunities for eliminating interference of external molecular sources and multi-user interference, and developing new multiple access techniques for MC nanonetworks. In this paper, we investigate channel sensing methods that use only a single type of receptors and exploit the amount of time receptors stay bound and unbound during ligand-receptor binding reaction to concurrently estimate the concentration of multiple types of ligands. We derive the Cramer-Rao Lower Bound for multi-ligand estimation, and propose practical and low-complexity suboptimal estimators for channel sensing. We analyze the performance of the proposed methods in terms of normalized mean squared error (NMSE), and show that they can efficiently estimate the concentration of ligands up to 10 different types with an average NMSE far below 10(-2). Lastly, we propose a synthetic receptor design based on modified kinetic proofreading scheme to sample the unbound and bound time durations, and a chemical reaction network to perform the required computations in synthetic cells.
  • Thumbnail Image
    PublicationOpen Access
    Joint code-frequency index modulation for IoT and multi-user communications
    (Institute of Electrical and Electronics Engineers (IEEE), 2019) Minh Au; Kaddoum, Georges; Alam, Md Sahabul; Gagnon, Francois; Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 149116
    In this paper we propose a family of index modulation systems which can operate with low-power consumption and low operational complexity for multi-user communication. This is particularly suitable for non-time sensitive Internet of Things (IoT) applications such as telemetry, smart metering, and soon. The proposed architecture reduces the peak-to-average-power ratio (PAPR) of orthogonal frequency-division multiplexing (OFDM)-based schemes without relegating the data rate. In the proposed scheme, we implement joint code-frequency-index modulation (CFIM) by considering code and frequency domains for index-modulation (IM). After introducing and analysing the structure of the CFIM, we derive closed-form expressions of the bit error rate (BER) performance over Rayleigh fading channels and we provide extensive simulation results to validate our outcomes. To better exhibit the particularities of the proposed scheme, the PAPR and complexity are thoroughly examined. The obtained results show that the PAPR is reduced compared to conventional OFDM-like IM-based schemes. Therefore, the proposed system is more likely to operate in the linear regime, which can in turn be implemented into low-cost devices with cost effective amplifiers. In addition, the concept is extended to synchronous multi-user communication networks, where full functionality is obtained by using orthogonal spreading codes. With the characteristics demonstrated in this work, the proposed system would constitute an exceptional nominee for IoT applications where low-complexity, low-power consumption and high data rate are paramount.
  • Thumbnail Image
    PublicationOpen Access
    Low-cost uplink sparse code multiple access for spatial modulation
    (Institute of Electrical and Electronics Engineers (IEEE), 2019) Al-Nahhal, Ibrahim; Dobre, Octavia A; Ikki, Salama; Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 149116
    Spatial modulation (SM) sparse codemultiple access (SCMA) systems provide high spectral efficiency (SE) at the expense of using a high number of transmit antennas. To overcome this drawback, this paper proposes a novel SM-SCMA system operating in uplink transmission, referred to as rotational generalized SM-SCMA (RGSM-SCMA). For the proposed system, the following are introduced, first, transmitter design and its formulation, second, maximum likelihood and maximum a posteriori probability decoders, and finally, practical low-complexitymessage passing algorithm and its complexity analysis. Simulation results and complexity analysis showthat the proposed RGSM-SCMA system delivers the same SE with significant savings in the number of transmit antennas, at the expense of close bit error rate and a negligible increase in the decoding complexity, when compared with SM-SCMA.