Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    PublicationOpen Access
    The structural basis of Akt PH domain interaction with calmodulin
    (Elsevier, 2021) Jang, Hyunbum; Nussinov, Ruth; N/A; Department of Chemical and Biological Engineering; Department of Computer Engineering; Weako, Jackson; Keskin, Özlem; Gürsoy, Attila; Faculty Member; Department of Chemical and Biological Engineering; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 26605; 8745
    Akt plays a key role in the Ras/PI3K/Akt/mTOR signaling pathway. In breast cancer, Akt translocation to the plasma membrane is enabled by the interaction of its pleckstrin homology domain (PHD) with calmodulin (CaM). At the membrane, the conformational change promoted by PIP3 releases CaM and facilitates Thr308 and Ser473 phosphorylation and activation. Here, using modeling and molecular dynamics simulations, we aim to figure out how CaM interacts with Akt's PHD at the atomic level. Our simulations show that CaM-PHD interaction is thermodynamically stable and involves a beta-strand rather than an alpha-helix, in agreement with NMR data, and that electrostatic and hydrophobic interactions are critical. The PHD interacts with CaM lobes; however, multiple modes are possible. IP4, the polar head of PIP3, weakens the CaM-PHD interaction, implicating the release mechanism at the plasma membrane. Recently, we unraveled the mechanism of PI3K alpha activation at the atomistic level and the structural basis for Ras role in the activation. Here, our atomistic structural data clarify the mechanism of how CaM interacts, delivers, and releases Akt-the next node in the Ras/PI3K pathway-at the plasma membrane.
  • Thumbnail Image
    PublicationOpen Access
    Understanding formation and structure of peptide nanofibers via steered MD simulations
    (Elsevier, 2012) Department of Mechanical Engineering; Engin, Özge; Özgür, Beytullah; Sayar, Mehmet; PhD Student; Faculty Member; Department of Mechanical Engineering; College of Engineering; N/A; N/A; 109820
  • Thumbnail Image
    PublicationOpen Access
    The photolyase/cryptochrome family of proteins as DNA repair enzymes and transcriptional repressors
    (Wiley, 2017) Aydın, Cihan; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Kavaklı, İbrahim Halil; Barış, İbrahim; Tardu, Mehmet; Gül, Şeref; Öner, Haşimcan; Bulut, Selma; Yarparvar, Darya; Ustaoğlu, Pınar; Teaching Faculty; PhD Student; Researcher; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; College of Engineering; College of Sciences; 40319; 111629; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A
    Light is a very important environmental factor that governs many cellular responses in organisms. As a consequence, organisms possess different kinds of light-sensing photoreceptors to regulate their physiological variables and adapt to a given habitat. The cryptochrome/photolyase family (CPF) includes photoreceptors that perform different functions in different organisms. Photolyases repair ultraviolet-induced DNA damage by a process known as photoreactivation using photons absorbed from the blue end of the light spectrum. On the other hand, cryptochromes act as blue light circadian photoreceptors in plants and Drosophila to regulate growth and development. In mammals, cryptochromes have light-independent functions and are very important transcriptional regulators that act at the molecular level as negative transcriptional regulators of the circadian clock. In this review, we highlight current knowledge concerning the structural and functional relationships of CPF members.