Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
4 results
Search Results
Publication Open Access A hierarchical solution approach for a multicommodity distribution problem under a special cost structure(Elsevier, 2012) Koca, Esra; Department of Industrial Engineering; Yıldırım, Emre Alper; Faculty Member; Department of Industrial Engineering; College of EngineeringMotivated by the spare parts distribution system of a major automotive manufacturer in Turkey, we consider a multicommodity distribution problem from a central depot to a number of geographically dispersed demand points. The distribution of the items is carried out by a set of identical vehicles. The demand of each demand point can be satisfied by several vehicles and a single vehicle is allowed to serve multiple demand points. For a given vehicle, the cost structure is dictated by the farthest demand point from the depot among all demand points served by that vehicle. The objective is to satisfy the demand of each demand point with the minimum total distribution cost. We present a novel integer linear programming formulation of the problem as a variant of the network design problem. The resulting optimization problem becomes computationally infeasible for real-life problems due to the large number of integer variables. In an attempt to circumvent this disadvantage of using the direct formulation especially for larger problems, we propose a Hierarchical Approach that is aimed at solving the problem in two stages using partial demand aggregation followed by a disaggregation scheme. We study the properties of the solution returned by the Hierarchical Approach. We perform computational studies on a data set adapted from a major automotive manufacturer in Turkey. Our results reveal that the Hierarchical Approach significantly outperforms the direct formulation approach in terms of both the running time and the quality of the resulting solution especially on large instances.Publication Open Access Rounding on the standard simplex: regular grids for global optimization(Springer, 2014) Bomze, Immanuel M.; Gollowitzer, Stefan; Department of Industrial Engineering; Yıldırım, Emre Alper; Faculty Member; Department of Industrial Engineering; College of EngineeringGiven a point on the standard simplex, we calculate a proximal point on the regular grid which is closest with respect to any norm in a large class, including all l(p)-norms for p >= 1 . We show that the minimal l(p)-distance to the regular grid on the standard simplex can exceed one, even for very fine mesh sizes in high dimensions. Furthermore, for p = 1, the maximum minimal distance approaches the l(1)-diameter of the standard simplex. We also put our results into perspective with respect to the literature on approximating global optimization problems over the standard simplex by means of the regular grid.Publication Open Access Sustainability in supply chain management: aggregate planning from sustainability perspective(Public Library of Science, 2016) Saraçoğlu, O.; Arslan, M.C.; Department of Industrial Engineering; Türkay, Metin; Saraçoğlu, Öztürk; Arslan, Mehmet Can; Faculty Member; Department of Industrial Engineering; College of Engineering; 24956; N/A; N/ASupply chain management that considers the flow of raw materials, products and information has become a focal issue in modern manufacturing and service systems. Supply chain management requires effective use of assets and information that has far reaching implications beyond satisfaction of customer demand, flow of goods, services or capital. Aggregate planning, a fundamental decision model in supply chain management, refers to the determination of production, inventory, capacity and labor usage levels in the medium term. Traditionally standard mathematical programming formulation is used to devise the aggregate plan so as to minimize the total cost of operations. However, this formulation is purely an economic model that does not include sustainability considerations. In this study, we revise the standard aggregate planning formulation to account for additional environmental and social criteria to incorporate triple bottom line consideration of sustainability. We show how these additional criteria can be appended to traditional cost accounting in order to address sustainability in aggregate planning. We analyze the revised models and interpret the results on a case study from real life that would be insightful for decision makers.Publication Open Access Joint gateway selection, transmission slot assignment, routing and power control for wireless mesh networks(Elsevier, 2013) Gökbayrak, Kağan; Department of Industrial Engineering; Yıldırım, Emre Alper; Faculty Member; Department of Industrial Engineering; College of EngineeringWireless mesh networks (WMNs) provide cost effective solutions for setting up a communications network over a certain geographic area. In this paper, we study strategic problems of WMNs such as selecting the gateway nodes along with several operational problems such as routing, power control, and transmission slot assignment. Under the assumptions of the physical interference model and the tree-based routing restriction for traffic flow, a mixed integer linear programming (MILP) formulation is presented, in which the objective is to maximize the minimum service level provided at the nodes. A set of valid inequalities is derived and added to the model in an attempt to improve the solution quality. Since the MILP formulation becomes computationally infeasible for larger instances, we propose a heuristic method that is aimed at solving the problem in two stages. In the first stage, we devise a simple MILP problem that is concerned only with the selection of gateway nodes. In the second stage, the MILP problem in the original formulation is solved by fixing the gateway nodes from the first stage. Computational experiments are provided to evaluate the proposed models and the heuristic method.