Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 10 of 90
  • Thumbnail Image
    PublicationOpen Access
    Quantum state transfer among crystallographic groups of N-V centers in diamond
    (Society of Photo-optical Instrumentation Engineers (SPIE), 2011) Department of Physics; Müstecaplıoğlu, Özgür Esat; Faculty Member; Department of Physics; College of Sciences; 1674
    We investigate collections of Nitrogen-Vacancy (N-V) Centers in diamond crystals coupled to a circuit QED system of a coplanar waveguide (CPWG) resonator. Our analysis reveals that different symmetry axes oriented N-V centers in the diamond host can be grouped into bosonic modes of collective quasi-spin wave excitations so that the hybrid system can be described as an analog of an exciton-polariton type cavity QED model. We examine such model for quantum state transfer among distinct crystallographic groups of N-V centers in a single diamond as well as two spatially distant diamonds. Rabi oscillations, mode entanglement, possible use of N-V classes as spin ensemble qubits and an implementation of continuous-time quantum random walk are discussed.
  • Thumbnail Image
    PublicationOpen Access
    Introduction to noise radar and its waveforms
    (Multidisciplinary Digital Publishing Institute (MDPI), 2020) De Palo, Francesco; Galati, Gaspare; Pavan, Gabriele; Wasserzier, Christoph; Department of Electrical and Electronics Engineering; Savcı, Kubilay; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering
    In the system-level design for both conventional radars and noise radars, a fundamental element is the use of waveforms suited to the particular application. In the military arena, low probability of intercept (LPI) and of exploitation (LPE) by the enemy are required, while in the civil context, the spectrum occupancy is a more and more important requirement, because of the growing request by non-radar applications; hence, a plurality of nearby radars may be obliged to transmit in the same band. All these requirements are satisfied by noise radar technology. After an overview of the main noise radar features and design problems, this paper summarizes recent developments in "tailoring" pseudo-random sequences plus a novel tailoring method aiming for an increase of detection performance whilst enabling to produce a (virtually) unlimited number of noise-like waveforms usable in different applications.
  • Thumbnail Image
    PublicationOpen Access
    Dimerization of pyrrole
    (TÜBİTAK, 1998) Yurtsever, Mine; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    Accurate ab-inito quantum mechanical calculations of pyrrole dimers are reported. The thermodynamical stabilities of dimers with alpha - alpha, alpha -beta, and beta - beta type linkages are compared in order to predict the possibilities of branching in polypyrroles. Calculations employing large basis sets and including electron correlation effects predict the alpha - alpha dimers as the most stable form. However, an alpha - beta type bonding requires only 1.5-2.0 kcal/mol, and the energy necessary to introduce a beta - beta type bond is 3.6-4.0 kcal/mol. These values show that a high degree of branching is possible even at room temperatures.
  • Thumbnail Image
    PublicationOpen Access
    Distinguishing genuine Imperial Qing Dynasty porcelain from ancient replicas by on-site non-invasive XRF and Raman spectroscopy
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Colomban, P.; Gironda, M.; d'Abrigeon, P.; Franci, Gülsu Şimşek; Researcher; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM)
    The combined use of non-invasive on-site portable techniques, Raman microscopy, and X-ray fluorescence spectroscopy on seven imperial bowls and two decorated dishes, attributed to the reigns of the Kangxi, Yongzheng, Qianlong, and Daoguang emperors (Qing Dynasty), allows the identification of the coloring agents/opacifiers and composition types of the glazes and painted enamels. Particular attention is paid to the analysis of the elements used in the (blue) marks and those found in the blue, yellow, red, and honey/gilded backgrounds on which, or in reserve, a floral motif is principally drawn. The honey-colored background is made with gold nanoparticles associated with a lead- and arsenic-based flux. One of the red backgrounds is also based on gold nanoparticles, the second containing copper nanoparticles, both in lead-based silicate enamels like the blue and yellow backgrounds. Tin and arsenic are observed, but cassiterite (SnO2) is clearly observed in one of the painted decors (dish) and in A676 yellow, whereas lead (calcium/potassium) arsenate is identified in most of the enamels. Yellow color is achieved with Pb-Sn-Sb pyrochlore (Naples yellow) with various Sb contents, although green color is mainly based on lead-tin oxide mixed with blue enamel. The technical solutions appear very different from one object to another, which leads one to think that each bowl is really a unique object and not an item produced in small series. The visual examination of some marks shows that they were made in overglaze (A608, A616, A630, A672). It is obvious that different types of cobalt sources were used for the imprinting of the marks: cobalt rich in manganese for bowl A615 (Yongzheng reign), cobalt rich in arsenic for bowl A613 (but not the blue mark), cobalt with copper (A616), and cobalt rich in arsenic and copper (A672). Thus, we have a variety of cobalt sources/mixtures. The high purity of cobalt used for A677 bowl indicates a production after similar to 1830-1850.
  • Thumbnail Image
    PublicationOpen Access
    Optical scanners for high resolution RSD systems
    (Society of Photo-optical Instrumentation Engineers (SPIE), 2002) DeWitt, F.; Luanava, S.; Department of Electrical and Electronics Engineering; Ürey, Hakan; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 8579
    This paper outlines the design trade-offs and measured results of scanner architectures for use in high resolution Retinal Scanning Displays: Mechanical resonant for horizontal scanning, and MEMS-based pinch correction and vertical linear scanners. Analysis steps and techniques used to model and minimize dynamic deformations are covered. This paper also discusses two types of scanners and associated mirror flatness issues. Dynamic flatness modeling and performance results are presented, followed by thermally induced deformations and possible athermalize solutions for MEMS-type scanning mirrors. Theory, FEA dynamic and thermal analysis, experimental results, and methods to reduce mirror deformation are discussed.
  • Thumbnail Image
    PublicationOpen Access
    Online failure diagnosis in interdependent networks
    (Springer Nature, 2021) Akbari, Vahid; N/A; Shiri, Davood; PhD Student; Graduate School of Sciences and Engineering
    In interdependent networks, nodes are connected to each other with respect to their failure dependency relations. As a result of this dependency, a failure in one of the nodes of one of the networks within a system of several interdependent networks can cause the failure of the entire system. Diagnosing the initial source of the failure in a collapsed system of interdependent networks is an important problem to be addressed. We study an online failure diagnosis problem defined on a collapsed system of interdependent networks where the source of the failure is at an unknown node (v). In this problem, each node of the system has a positive inspection cost and the source of the failure is diagnosed when v is inspected. The objective is to provide an online algorithm which considers dependency relations between nodes and diagnoses v with minimum total inspection cost. We address this problem from worst-case competitive analysis perspective for the first time. In this approach, solutions which are provided under incomplete information are compared with the best solution that is provided in presence of complete information using the competitive ratio (CR) notion. We give a lower bound of the CR for deterministic online algorithms and prove its tightness by providing an optimal deterministic online algorithm. Furthermore, we provide a lower bound on the expected CR of randomized online algorithms and prove its tightness by presenting an optimal randomized online algorithm. We prove that randomized algorithms are able to obtain better CR compared to deterministic algorithms in the expected sense for this online problem.
  • Thumbnail Image
    PublicationOpen Access
    DRX and QoS-aware energy-efficient uplink scheduling for long term evolution
    (Institute of Electrical and Electronics Engineers (IEEE), 2013) Koç, Ali T.; Ergül, Özgür; Yılmaz, Özgür; Akan, Özgür Barış; PhD Student; Faculty Member; Faculty Member; College of Engineering; N/A; 108638; N/A
    Discontinuous reception (DRX) is supported in 3GPP Long Term Evolution (LTE) to reduce power consumption of user equipments (UEs). Power conservation achieved via DRX can be further increased with a packet scheduler that takes DRX states into consideration. Thus, in addition to quality of service (QoS) and fairness factors, which have been the main focus so far in scheduler design, energy efficiency must also be considered in scheduling. In this paper, we introduce a DRX and QoS-aware uplink packet scheduling algorithm (DQEPS) for LTE networks. One of the main reasons of poor DRX utilization is the continuous uplink packet traffic generated by applications working in the background. Accordingly, we first lay out the cumulative distribution functions (CDF) of interpacket arrival durations constructed by inspecting uplink packet transmission for various applications. Then, we form metrics for each bearer using these CDFs along with the DRX states, QoS parameters, channel conditions, and the buffer status of the bearers. Using these metrics, we develop a scheduling algorithm for the uplink, which aims to maximize power conservation of DRX mechanism by scheduling packets in a way that tries to minimize ON duration, while meeting the QoS requirements. Performance evaluations indicate that DQEPS reduces power consumption significantly compared to the previously proposed methods for LTE.
  • Thumbnail Image
    PublicationOpen Access
    Impact of rehabilitation on fatigue in post-Covid-19 patients: a systematic review and meta-analysis
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) de Sire, Alessandro; Moggio, Lucrezia; Marotta, Nicola; Agostini, Francesco; Tasselli, Anna; Ferrante, Vera Drago; Curci, Claudio; Calafiore, Dario; Ferraro, Francesco; Bernetti, Andrea; Ammendolia, Antonio; Taşkıran, Özden Özyemişçi; Faculty Member; School of Medicine; 133091
    The post-COVID-19 syndrome may affect patients after the COVID-19 post-acute phase. In particular, the 69% of patients reported persistent fatigue at the discharge. To date, no clear data are available regarding the most effective rehabilitative approaches for the treatment of this condition. Thus, this systematic review aimed to evaluate the rehabilitation treatment's efficacy on fatigue in post-COVID-19 patients. We systematically searched PubMed, Scopus, and Web of Science databases to find longitudinal study designs presenting: post-COVID-19 patients as participants; a rehabilitative approach aimed to reduce post-COVID-19 syndrome as intervention; and fatigue intensity assessed through an evaluation tool that quantified the perceived exertion (i.e., fatigue severity scale, FSS; Borg Scale (BS); Borg Category Ratio 10, CR10; Checklist Individual Strength (CIS) fatigue scale; FACIT (Functional Assessment of Chronic Illness Therapy) fatigue scale). The present systematic review protocol was registered on PROSPERO (registration number CRD42021284058). Out of 704 articles, 6 studies were included. Nearly all patients showed COVID-19-related fatigue, and after the rehabilitation treatment, only 17% of subjects reported the persistency of symptoms. The overall effect size reported a -1.40 decrease in Borg Category Ratio 10 with a SE of 0.05 and a 95% CI between -1.50 and -1.30 (p < 0.001). The present systematic review and meta-analysis underlines the rehabilitation role in the fatigue reduction in patients affected by post-COVID-19 syndrome.
  • Thumbnail Image
    PublicationOpen Access
    A diversity combination model incorporating an inward bias for interaural time-level difference cue integration in sound lateralization
    (Multidisciplinary Digital Publishing Institute (MDPI), 2020) N/A; Department of Computer Engineering; Mojtahedi, Sina; Erzin, Engin; Ungan, Pekcan; Faculty Member; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; School of Medicine; N/A; 34503; N/A
    A sound source with non-zero azimuth leads to interaural time level differences (ITD and ILD). Studies on hearing system imply that these cues are encoded in different parts of the brain, but combined to produce a single lateralization percept as evidenced by experiments indicating trading between them. According to the duplex theory of sound lateralization, ITD and ILD play a more significant role in low-frequency and high-frequency stimulations, respectively. In this study, ITD and ILD, which were extracted from a generic head-related transfer functions, were imposed on a complex sound consisting of two low- and seven high-frequency tones. Two-alternative forced-choice behavioral tests were employed to assess the accuracy in identifying a change in lateralization. Based on a diversity combination model and using the error rate data obtained from the tests, the weights of the ITD and ILD cues in their integration were determined by incorporating a bias observed for inward shifts. The weights of the two cues were found to change with the azimuth of the sound source. While the ILD appears to be the optimal cue for the azimuths near the midline, the ITD and ILD weights turn to be balanced for the azimuths far from the midline.
  • Thumbnail Image
    PublicationOpen Access
    Demo: Skip Graph middleware implementation
    (Institute of Electrical and Electronics Engineers (IEEE), 2020) Department of Computer Engineering; Hassanzadeh-Nazarabadi, Yahya; Nayal, Nazir; Hamdan, Shadi Sameh; Şahin, Ali Utkan; Özkasap, Öznur; Küpçü, Alptekin; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; N/A; 113507; 168060
    Skip Graphs are Distributed Hash Table (DHT)based data structures that are immensely utilized as routing overlays in Peer-to-Peer (P2P) applications. In this demo paper, we present the software architecture of our open-source implementation of Skip Graph middleware in Java. We also present a demo scenario on configuration and constructing an overlay of Skip Graph processes in a fully decentralized manner. Our implementation is capable of hosting data objects at the Skip Graph processes and serving as a P2P data storage platform as well. Our middleware implementation provides an open-source platform to support Skip Graph-based applications on top of it.