Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    PublicationOpen Access
    A hierarchical solution approach for a multicommodity distribution problem under a special cost structure
    (Elsevier, 2012) Koca, Esra; Department of Industrial Engineering; Yıldırım, Emre Alper; Faculty Member; Department of Industrial Engineering; College of Engineering
    Motivated by the spare parts distribution system of a major automotive manufacturer in Turkey, we consider a multicommodity distribution problem from a central depot to a number of geographically dispersed demand points. The distribution of the items is carried out by a set of identical vehicles. The demand of each demand point can be satisfied by several vehicles and a single vehicle is allowed to serve multiple demand points. For a given vehicle, the cost structure is dictated by the farthest demand point from the depot among all demand points served by that vehicle. The objective is to satisfy the demand of each demand point with the minimum total distribution cost. We present a novel integer linear programming formulation of the problem as a variant of the network design problem. The resulting optimization problem becomes computationally infeasible for real-life problems due to the large number of integer variables. In an attempt to circumvent this disadvantage of using the direct formulation especially for larger problems, we propose a Hierarchical Approach that is aimed at solving the problem in two stages using partial demand aggregation followed by a disaggregation scheme. We study the properties of the solution returned by the Hierarchical Approach. We perform computational studies on a data set adapted from a major automotive manufacturer in Turkey. Our results reveal that the Hierarchical Approach significantly outperforms the direct formulation approach in terms of both the running time and the quality of the resulting solution especially on large instances.
  • Thumbnail Image
    PublicationOpen Access
    Rounding on the standard simplex: regular grids for global optimization
    (Springer, 2014) Bomze, Immanuel M.; Gollowitzer, Stefan; Department of Industrial Engineering; Yıldırım, Emre Alper; Faculty Member; Department of Industrial Engineering; College of Engineering
    Given a point on the standard simplex, we calculate a proximal point on the regular grid which is closest with respect to any norm in a large class, including all l(p)-norms for p >= 1 . We show that the minimal l(p)-distance to the regular grid on the standard simplex can exceed one, even for very fine mesh sizes in high dimensions. Furthermore, for p = 1, the maximum minimal distance approaches the l(1)-diameter of the standard simplex. We also put our results into perspective with respect to the literature on approximating global optimization problems over the standard simplex by means of the regular grid.
  • Thumbnail Image
    PublicationOpen Access
    Joint gateway selection, transmission slot assignment, routing and power control for wireless mesh networks
    (Elsevier, 2013) Gökbayrak, Kağan; Department of Industrial Engineering; Yıldırım, Emre Alper; Faculty Member; Department of Industrial Engineering; College of Engineering
    Wireless mesh networks (WMNs) provide cost effective solutions for setting up a communications network over a certain geographic area. In this paper, we study strategic problems of WMNs such as selecting the gateway nodes along with several operational problems such as routing, power control, and transmission slot assignment. Under the assumptions of the physical interference model and the tree-based routing restriction for traffic flow, a mixed integer linear programming (MILP) formulation is presented, in which the objective is to maximize the minimum service level provided at the nodes. A set of valid inequalities is derived and added to the model in an attempt to improve the solution quality. Since the MILP formulation becomes computationally infeasible for larger instances, we propose a heuristic method that is aimed at solving the problem in two stages. In the first stage, we devise a simple MILP problem that is concerned only with the selection of gateway nodes. In the second stage, the MILP problem in the original formulation is solved by fixing the gateway nodes from the first stage. Computational experiments are provided to evaluate the proposed models and the heuristic method.
  • Thumbnail Image
    PublicationOpen Access
    Supervised-learning-based approximation method for multi-server queueing networks under different service disciplines with correlated interarrival and service times
    (Taylor _ Francis, 2021) Department of Business Administration; N/A; Tan, Barış; Khayyati, Siamak; Faculty Member; Department of Business Administration; College of Administrative Sciences and Economics; Graduate School of Sciences and Engineering; 28600; N/A
    Developing efficient performance evaluation methods is important to design and control complex production systems effectively. We present an approximation method (SLQNA) to predict the performance measures of queueing networks composed of multi-server stations operating under different service disciplines with correlated interarrival and service times with merge, split, and batching blocks separated with infinite capacity buffers. SLQNA yields the mean, coefficient of variation, and first-lag autocorrelation of the inter-departure times and the distribution of the time spent in the block, referred as the cycle time at each block. The method generates the training data by simulating different blocks for different parameters and uses Gaussian Process Regression to predict the inter-departure time and the cycle time distribution characteristics of each block in isolation. The predictions obtained for one block are fed into the next block in the network. The cycle time distributions of the blocks are used to approximate the distribution of the total time spent in the network (total cycle time). This approach eliminates the need to generate new data and train new models for each given network. We present SLQNA as a versatile, accurate, and efficient method to evaluate the cycle time distribution and other performance measures in queueing networks.