Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
24 results
Search Results
Publication Open Access Virulence determinants of colistin-resistant K. pneumoniae high-risk clones(Multidisciplinary Digital Publishing Institute (MDPI), 2021) Department of Industrial Engineering; Department of Industrial Engineering; Ergönül, Önder; Gönen, Mehmet; Can, Füsun; Doğan, Özlem; Vatansever, Cansel; Ataç, Nazlı; Albayrak, Özgür; Karahüseyinoğlu, Serçin; Şahin, Özgün Ekin; Kılıçoğlu, Bilge Kaan; Demiray, Atalay; Faculty Member; Faculty Member; Faculty Member; Faculty Member; Undergraduate Student; Researcher; Faculty Member; Master Student; School of Medicine; Graduate School of Health Sciences; College of Engineering; 110398; 237468; 103165; 170418; N/A; N/A; N/A; 110772; N/A; N/A; N/AWe proposed the hypothesis that high-risk clones of colistin-resistant K. pneumoniae (ColR-Kp) possesses a high number of virulence factors and has enhanced survival capacity against the neutrophil activity. We studied virulence genes of ColR-Kp isolates and neutrophil response in 142 patients with invasive ColR-Kp infections. The ST101 and ST395 ColR-Kp infections had higher 30-day mortality (58%, p = 0.005 and 75%, p = 0.003). The presence of yersiniabactin biosynthesis gene (ybtS) and ferric uptake operon associated gene (kfu) were significantly higher in ST101 (99%, p <= 0.001) and ST395 (94%, p < 0.012). Being in ICU (OR: 7.9; CI: 1.43-55.98; p = 0.024), kfu (OR:27.0; CI: 5.67-179.65; p < 0.001) and ST101 (OR: 17.2; CI: 2.45-350.40; p = 0.01) were found to be predictors of 30-day mortality. Even the neutrophil uptake of kfu+-ybtS+ ColR-Kp was significantly higher than kfu--ybtS- ColR-Kp (phagocytosis rate: 78% vs. 65%, p < 0.001), and the kfu+-ybtS+ ColR-Kp survived more than kfu--ybtS- ColR-Kp (median survival index: 7.90 vs. 4.22; p = 0.001). The kfu+-ybtS+ ColR-Kp stimulated excessive NET formation. Iron uptake systems in high-risk clones of colistin-resistant K. pneumoniae enhance the success of survival against the neutrophil phagocytic defense and stimulate excessive NET formation. The drugs targeted to iron uptake systems would be a promising approach for the treatment of colistin-resistant high-risk clones of K. pneumoniae infections.Publication Open Access Genome-wide analysis reveals regional patterns of drift, structure, and gene flow in longfin smelt (Spirinchus thaleichthys) in the northeastern Pacific(Canadian Science Publishing, 2021) Hobbs, James; Baxter, Randall; Lewis, Levi S.; Benjamin, Alyssa; Finger, Amanda J.; Department of Molecular Biology and Genetics; Department of Molecular Biology and Genetics; Sağlam, İsmail Kudret; Faculty Member; College of Sciences; 168783The southernmost stock of longfin smelt (Spirinchus thaleichthys) is approaching extirpation in the San Francisco Estuary (SFE); however, patterns of genetic structure, diversity and gene flow which are vital for management are poorly understood in this species. Here, we use genome-wide data to evaluate population structure of longfin smelt across a broad latitudinal scale across estuaries ranging from the SFE to Yakutat Bay and Lake Washington, and fine scale within the Fraser River and the SFE. Results indicate high genetic structure between major estuaries, fine-scale structure within the Fraser River, and low levels of structure within the SFE. Genetic structure was more pronounced between northern estuaries whereas southern estuaries showed shared ancestry and ongoing gene flow, most notably unidirectional northward migration out of the SFE. Furthermore, we detected signatures of local adaptation within the Fraser River and the Skeena River estuaries. Taken together, our results identify broad patterns of genetic diversity in longfin smelt shaped by co-ancestry, unidirectional migration and local adaptation. Results also suggest that the SFE population is genetically distinct from northernmost populations and an important source for maintaining nearby populations.Publication Open Access Distinct chemical composition and enzymatic treatment induced human endothelial cells survival in acellular ovine aortae(BioMed Central, 2021) Rahbarghazi, Reza; Saberianpour, Shirin; Delkhosh, Aref; Amini, Hassan; Hassanpour, Mehdi; Heidarzadeh, Morteza; Sokullu, Emel; PhD Student; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Health Sciences; School of Medicine; N/A; 163024Objective: the current experiment aimed to assess the impact of detergents such as 3% Triton X-100, 1% peracetic acid, 1% Tween-20, and 1% SDS in combination with Trypsin–EDTA on acellularization of ovine aortae after 7 days. Results: Hematoxylin–Eosin staining showed an appropriate acellularization rate in ovine aortae, indicated by a lack of cell nuclei in the tunica media layer. DAPI staining confirmed the lack of nuclei in the vascular wall after being exposed to the combination of chemical and enzymatic solutions. Verhoeff-Van Gieson staining showed that elastin fibers were diminished in acellular samples compared to the control group while collagen stands were unchanged. CCK-8 survival assay showed enhanced viability in human umbilical vein endothelial cells 5 days after being cultured on decellularized samples compared to the cells cultured on a plastic surface (p < 0.05). SEM imaging showed flattening of endothelial cells on the acellular surface.Publication Open Access Crosstalk between autophagy and DNA repair systems(TÜBİTAK, 2021) Demirbağ Sarıkaya, Sinem; Çakır, Hatice; Gözüaçık, Devrim; Akkoç, Yunus; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine; 40248; N/AAutophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.Publication Open Access Neural substrates of the drift-diffusion model in brain disorders(Frontiers, 2022) Gupta, A.; Bansal, R.; Alashwal, H.; Moustafa A.A.; Balcı, Fuat; Kaçar, Anıl Şafak; Faculty Member; PhD Student; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine; Graduate School of Health Sciences; 51269; N/AMany studies on the drift-diffusion model (DDM) explain decision-making based on a unified analysis of both accuracy and response times. This review provides an in-depth account of the recent advances in DDM research which ground different DDM parameters on several brain areas, including the cortex and basal ganglia. Furthermore, we discuss the changes in DDM parameters due to structural and functional impairments in several clinical disorders, including Parkinson's disease, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD), and schizophrenia. This review thus uses DDM to provide a theoretical understanding of different brain disorders.Publication Open Access CLIC4 and CLIC1 bridge plasma membrane and cortical actin network for a successful cytokinesis(Life Science Alliance LLC, 2020) Department of Molecular Biology and Genetics; Department of Molecular Biology and Genetics; Kagiali, Zeynep Cansu Üretmen; Şanal, Erdem; Değirmenci, Beste Senem; Mollaoğlu, Gürkan; Saner, Nazan; Master Student; Faculty Member; Researcher; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; N/A; 105301; 227757CLIC4 and CLIC1 are members of the well-conserved chloride intracellular channel proteins (CLICs) structurally related to glutathione-S-transferases. Here, we report new roles of CLICs in cytokinesis. At the onset of cytokinesis, CLIC4 accumulates at the cleavage furrow and later localizes to the midbody in a RhoA-dependent manner. The cell cycle-dependent localization of CLIC4 is abolished when its glutathione S-transferase activity-related residues (C35A and F37D) are mutated. Ezrin, anillin, and ALIX are identified as interaction partners of CLIC4 at the cleavage furrow and midbody. Strikingly, CLIC4 facilitates the activation of ezrin at the cleavage furrow and reciprocally inhibition of ezrin activation diminishes the translocation of CLIC4 to the cleavage furrow. Furthermore, knockouts of CLIC4 and CLIC1 cause abnormal blebbing at the polar cortex and regression of the cleavage furrow at late cytokinesis leading to multinucleated cells. We conclude that CLIC4 and CLIC1 function together with ezrin where they bridge plasma membrane and actin cytoskeleton at the polar cortex and cleavage furrow to promote cortical stability and successful completion of cytokinesis in mammalian cells.Publication Open Access Archaeogenetic analysis of Neolithic sheep from Anatolia suggests a complex demographic history since domestication(Nature Portfolio, 2021) Yurtman, Erinç; Özer, Onur; Yüncü, Eren; Dağtaş, Nihan Dilşad; Koptekin, Dilek; Çakan, Yasin Gökhan; Özkan, Mustafa; Akbaba, Ali; Kaptan, Damla; Atağ, Gözde; Vural, Kıvılcım Başak; Gündem, Can Yümni; Martin, Louise; Kılınç, Gülşah Merve; Ghalichi, Ayshin; Açan, Sinan Can; Yaka, Reyhan; Sağlıcan, Ekin; Lagerholm, Vendela Kempe; Krzewinska, Maja; Gunther, Torsten; Miranda, Pedro Morell; Pişkin, Evangelia; Sevketoğlu, Müge; Bilgin, C. Can; Atakuman, Ciğdem; Erdal, Yılmaz Selim; Sürer, Elif; Altınışık, N. Ezgi; Lenstra, Johannes A.; Yorulmaz, Sevgi; Abazari, Mohammad Foad; Hoseinzadeh, Javad; Baird, Douglas; Bıcakcı, Erhan; Çevik, Özlem; Gerritsen, Fokke; Gotherstrom, Anders; Somel, Mehmet; Togan, İnci; Özer, Füsun; Department of Archeology and History of Art; Department of Archeology and History of Art; Özbal, Rana; Faculty Member; College of Social Sciences and Humanities; 55583Sheep were among the first domesticated animals, but their demographic history is little understood. Here we analyzed nuclear polymorphism and mitochondrial data (mtDNA) from ancient central and west Anatolian sheep dating from Epipaleolithic to late Neolithic, comparatively with modern-day breeds and central Asian Neolithic/Bronze Age sheep (OBI). Analyzing ancient nuclear data, we found that Anatolian Neolithic sheep (ANS) are genetically closest to present-day European breeds relative to Asian breeds, a conclusion supported by mtDNA haplogroup frequencies. In contrast, OBI showed higher genetic affinity to present-day Asian breeds. These results suggest that the east-west genetic structure observed in present-day breeds had already emerged by 6000 BCE, hinting at multiple sheep domestication episodes or early wild introgression in southwest Asia. Furthermore, we found that ANS are genetically distinct from all modern breeds. Our results suggest that European and Anatolian domestic sheep gene pools have been strongly remolded since the Neolithic.Publication Open Access Omnivory in birds is a macroevolutionary sink(Nature Publishing Group (NPG), 2016) Burin, Gustavo; Kissling, W. Daniel; Guimaraes, Paulo R., Jr.; Quental, Tiago B.; N/A; Şekercioğlu, Çağan Hakkı; Faculty Member; College of SciencesDiet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negat0ive. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources.Publication Open Access Terminal neuron localization to the upper cortical plate is controlled by the transcription factor NEUROD2(Nature Publishing Group (NPG), 2019) Department of Molecular Biology and Genetics; Department of Physics; Department of Molecular Biology and Genetics; Department of Physics; Akkaya, Cansu; Atak, Dila; Güzelsoy, Gizem; Dunn, Cory David; Dunn, Gülayşe İnce; Kabakçıoğlu, Alkan; Master Student; Faculty Member; Faculty Member; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; N/A; 105301; N/A; 49854Excitatory neurons of the mammalian cerebral cortex are organized into six functional layers characterized by unique patterns of connectivity, as well as distinctive physiological and morphological properties. Cortical layers appear after a highly regulated migration process in which cells move from the deeper, proliferative zone toward the superficial layers. Importantly, defects in this radial migration process have been implicated in neurodevelopmental and psychiatric diseases. Here we report that during the final stages of migration, transcription factor Neurogenic Differentiation 2 (Neurod2) contributes to terminal cellular localization within the cortical plate. In mice, in utero knockdown of Neurod2 resulted in reduced numbers of neurons localized to the uppermost region of the developing cortex, also termed the primitive cortical zone. Our ChIP-Seq and RNA-Seq analyses of genes regulated by NEUROD2 in the developing cortex identified a number of key target genes with known roles in Reelin signaling, a critical regulator of neuronal migration. Our focused analysis of regulation of the Reln gene, encoding the extracellular ligand REELIN, uncovered NEUROD2 binding to conserved E-box elements in multiple introns. Furthermore, we demonstrate that knockdown of NEUROD2 in primary cortical neurons resulted in a strong increase in Reln gene expression at the mRNA level, as well as a slight upregulation at the protein level. These data reveal a new role for NEUROD2 during the late stages of neuronal migration, and our analysis of its genomic targets offers new genes with potential roles in cortical lamination.Publication Open Access In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry(TÜBİTAK, 2021) Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Gül, Şeref; Researcher; Graduate School of Sciences and EngineeringDespite COVID-19 turned into a pandemic, no approved drug for the treatment or globally available vaccine is out yet. In such a global emergency, drug repurposing approach that bypasses a costly and long-time demanding drug discovery process is an effective way in search of finding drugs for the COVID-19 treatment. Recent studies showed that SARS-CoV-2 uses neuropilin-1 (NRP1) for host entry. Here we took advantage of structural information of the NRP1 in complex with C-terminal of spike (S) protein of SARSCoV-2 to identify drugs that may inhibit NRP1 and S protein interaction. U.S. Food and Drug Administration (FDA) approved drugs were screened using docking simulations. Among top drugs, well-tolerated drugs were selected for further analysis. Molecular dynamics (MD) simulations of drugs-NRP1 complexes were run for 100 ns to assess the persistency of binding. MM/GBSA calculations from MD simulations showed that eltrombopag, glimepiride, sitagliptin, dutasteride, and ergotamine stably and strongly bind to NRP1. In silico Alanine scanning analysis revealed that Tyr(297), Trp(301), and Tyr(353) amino acids of NRP1 are critical for drug binding. Validating the effect of drugs analyzed in this paper by experimental studies and clinical trials will expedite the drug discovery process for COVID-19.
- «
- 1 (current)
- 2
- 3
- »