Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 1005
  • Placeholder
    Publication
    “O/F shift” in hybrid rockets
    (American Institute of Aeronautics and Astronautics, 2014) Toson, Elena; Evans, Brian; Department of Mechanical Engineering; Karabeyoğlu, Mustafa Arif; Faculty Member; Department of Mechanical Engineering; College of Engineering; 114595
    For most hybrid rocket systems, oxidizer to fuel ratio (O/F) changes over time due to 1) natural growth of the fuel port diameter and 2) oxidizer flow rate variations, if throttling is employed. This phenomenon, which is referred to as “O/F shift”, leads to a reduction in motor performance. Note that liquid or solid rocket motors are not subject to temporal O/F variations, which is wrongfully considered as one of the most critical disadvantages of hybrid rockets. In this paper, the effect of “O/F shift” is quantified for hybrid rocket motors. Analytical formulas for the temporal O/F variation and the overall c* efficiency drop associated with the variation has been derived for single circular port motors. It has been shown that for a typical motor, c* efficiency drop due to O/F variation is well below 0.2%, a value which is too small to be measured in an actual motor test. It is also shown that for a wagon wheel type multiport configuration (with triangular ports), efficiency drop is significantly worse than the single circular port case. Even for the multiport systems, the shift does not have a controlling effect on the overall efficiency of the motor. A number of strategies have been outlined to control the adverse effects of O/F variation in a hybrid rocket. For a single circular port design with limited throttling, no mitigation is required. For systems with deep throttling requirements, aft oxidizer injection seems like a viable strategy to retain a high level of overall efficiency.
  • Placeholder
    Publication
    1.07 - Rubberlike elasticity
    (Elsevier, 2012) Mark, J.E.; Department of Chemical and Biological Engineering; Erman, Burak; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 179997
    Molecular structure, molecular and phenomenological theories, and computer simulations of amorphous rubberlike polymeric networks of rubber elasticity are discussed. Behavior of responsive gels, multimodal, liquid-crystalline, and reinforced elastomers in the state of thermodynamic equilibrium are outlined. Characterization of structure and properties based on stress–strain experiments, optical and spectroscopic techniques, scanning tunneling microscopy, atomic force microscopy, nuclear magnetic resonance, small-angle and Brillouin scattering, and pulse wave propagation are outlined. © 2012 Elsevier B.V. All rights reserved.
  • Placeholder
    Publication
    16.4: the optics of an autostereoscopic multiview display
    (SID, 2010) Baghsiahi, Hadi; Selviah, David R.; Willman, Eero; Fernández, Anibal; Day, Sally E.; Surman, Phil A.; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Erden, Erdem; Chellappan, Kishore Velichappattu; Ürey, Hakan; Master Student; Researcher; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 8579
    An autostereoscopic head-tracked back projection display that uses an RGB laser illumination source and a fast light engine is described. Images are horizontally scanned columns controlled by a spatial light modulator that directs two or more images in the directions of the apposite viewers 'eyes.
  • Placeholder
    Publication
    3D object matching via multivariate shape distributions
    (Institute of Electrical and Electronics Engineers (IEEE), 2005) Akgül, C.B.; Sankur, B.; Schmitt, F.; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907
    3B nesne eşleştirme literatüründe, problemi şekil dağılımlarının karşılaştırılmasına indirgeyen yöntemler bulunmaktadır. Şekil dağılımı, 3B nesne yüzeyi üzerinde hesaplanan bir işlevin değerlerinin olasılık dağılımı olarak tanımlanır. Bu çalışmada varolan yöntemi, birden çok işlevin getirdiği şekil bilgisinden aynı anda yararlanacak şekilde genişletiyoruz. Çokboyutlu şekil dağılımları adını verdiğimiz bu 3B nesne betimleyicilerini, örnek bir 3B nesne veri tabanındaki nesneler için parametrik olmayan yaklaşımlarla kestiriyor, karşılaştırmaları alternatif metrikler yoluyla yapıyoruz. Elde edilen kesinlik-geri getirme eğrileri çokboyutlu şekil dağılımlarının karşılaştırılmasının yeni bir 3B nesne eşleştirme paradigması olabileceğini göstermektedir.
  • Placeholder
    Publication
    48.4: Beam forming for a laser based auto-stereoscopic multi-viewer display
    (Blackwell Publishing Ltd, 2011) Baghsiahi, Hadi; Selviah, David R.; Willman, Eero; Fernández, Anibal; Day, Sally E.; Surman, Phil A.; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Akşit, Kaan; Ölçer, Selim; Mostafazadeh, Aref; Erden, Erdem; Chellappan, Kishore Velichappattu; Ürey, Hakan; PhD Student; Other; N/A; Other; N/A; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; College of Engineering; N/A; N/A; N/A; N/A; N/A; 8579
    An auto-stereoscopic back projection display using a RGB multiemitter laser illumination source and micro-optics to provide a wider view is described. The laser optical properties and the speckle due to the optical system configuration and its diffusers are characterised. © 2011 SID.
  • Thumbnail Image
    PublicationOpen Access
    A 2D MEMS stage for optical applications
    (Society of Photo-optical Instrumentation Engineers (SPIE), 2006) Ataman, Çağlar; Petremand, Yves; Noell, Wilfried; Epitaux, Marc; de Rooij, Nico F.; Department of Electrical and Electronics Engineering; Ürey, Hakan; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 8579
    A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50/μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear ID translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.
  • Placeholder
    Publication
    A bi-criteria optimization model to analyze the impacts of electric vehicles on costs and emissions
    (Elsevier, 2017) N/A; N/A; Department of Industrial Engineering; Kabatepe, Bora; Türkay, Metin; Master Student; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 24956
    Electric vehicles (EV) are emerging as a mobility solution to reduce emissions in the transportation sector. The studies environmental impact analysis of EVs in the literature are based on the average energy mix or pre-defined generation scenarios and construct policy recommendations with a cost minimization objective. However, the environmental performance of EVs depends on the source of the marginal electricity provided to the grid and single objective models do not provide a thorough analysis on the economic and environmental impacts of EVs. In this paper, these gaps are addressed by a four step methodology that analyzes the effects of EVs under different charging and market penetration scenarios. The methodology includes a bi-criteria optimization model representing the electricity market operations. The results from a real-life case analysis show that EVs decrease costs and emissions significantly compared to conventional vehicles.
  • Placeholder
    Publication
    A blind fractionally spaced equalization algorithm with global convergence
    (IEEE, 2007) Department of Electrical and Electronics Engineering; Erdoğan, Alper Tunga; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 41624
    In this article we present a fractionally spaced extension of the SubGradient based Blind equalization Algorithm (SGBA). The basic features of the proposed algorithm are the non-linear constraint on the search vector and the selection of the weighting and step size applied to the search vector. It is proven that the algorithm is globally convergent to a perfect equalization point under the well known equalizability conditions for the fractionally spaced setting. The simulation results provided at the end of the article illustrates the relative merit of the proposed algorithm in comparison to the state of the art algorithms.
  • Placeholder
    Publication
    A blind separation approach for magnitude bounded sources
    (IEEE, 2005) Department of Electrical and Electronics Engineering; Erdoğan, Alper Tunga; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 41624
    A novel blind source separation approach for channels with and without memory is introduced. The proposed approach makes use of pre-whitening procedure to convert the original convolutive channel into a lossless and memoryless one. Then a blind subgradient algorithm, which corresponds to an l(infinity) norm based criterion, is used for the separation of sources. The proposed separation algorithm exploits the assumed boundedness of the original sources and it has a simple update rule. The typical performance of the algorithm is illustrated through simulation examples where separation is achieved with only small numbers of iterations.
  • Placeholder
    Publication
    A bounded component analysis approach for the separation of convolutive mixtures of dependent and independent sources
    (Institute of Electrical and Electronics Engineers (IEEE), 2013) N/A; N/A; Department of Electrical and Electronics Engineering; İnan, Hüseyin Atahan; Erdoğan, Alper Tunga; Master Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 41624
    Bounded Component Analysis is a new framework for Blind Source Separation problem. It allows separation of both dependent and independent sources under the assumption about the magnitude boundedness of sources. This article proposes a novel Bounded Component Analysis optimization setting for the separation of the convolutive mixtures of sources as an extension of a recent geometric framework introduced for the instantaneous mixing problem. It is shown that the global maximizers of this setting are perfect separators. The article also provides the iterative algorithm corresponding to this setting and the numerical examples to illustrate its performance especially for separating convolutive mixtures of sources that are correlated in both space and time dimensions.