Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 2108
  • Placeholder
    Publication
    “Beware the young doctor and the old barber”: development and validation of a job age-type spectrum
    (Elsevier, 2021) Reeves, Michael Dennis; Fritzsche, Barbara Ann; Smith, Nicholas Anthony; Ng, Yin Lu; Department of Business Administration; Marcus, Justin; Faculty Member; Department of Business Administration; College of Administrative Sciences and Economics; 124653
    Taking a worker-centric approach, with evidence based on the experiences of working individuals, the current study examines the age-related stereotypes of jobs, the characteristics of age-stereotyped jobs, and the consequences of occupying them. In Study 1, we utilize samples of working adults from the US, Turkey, and Malaysia to establish validation evidence for a spectrum of 160 jobs (n = 123 raters per job). Study 1 findings indicate that entry-level jobs and jobs requiring manual labor or the use of technology are younger-typed, whereas senior level jobs and jobs requiring large investments in training or education are older-typed. The age-typing of jobs was found to be similar across countries for the vast majority of jobs. We then provide criterion validity evidence in Study 2, by testing the interactive effects of chronological age, job age-type, and sex on psychological age and perceived age and sex discrimination across samples of workers from these same three countries (n = 1469). Results upheld theoretical predictions based upon career timetables theory, prototype matching theory, and intersectional salience of ageism theory. The interactive effects of chronological age and job age-type were stronger for women than for men; the hypothesized patterns of effects were overall consistent for women but not for men.
  • Thumbnail Image
    PublicationOpen Access
    “Noise Factory”: a qualitative study exploring healthcare providers’ perceptions of noise in the intensive care unit
    (Elsevier, 2020) Güner, Perihan; Kebapçı, Ayda; Faculty Member; School of Nursing; 203808
    Objectives: this study aimed to explore healthcare providers’ perceptions of noise in the intensive care unit. Design: a qualitative exploratory study was conducted using group interviews. Setting: the setting comprised a total of 15 participants (five physicians and ten registered nurses) working in an 18-bed medical surgical intensive care unit at a teaching hospital in Istanbul, Turkey. Semi-structured questions were formulated and used in focus group interviews, after which the recorded interviews were transcribed by the researchers. Thematic analysis was used to identify significant statements and initial codes. Findings: four themes were identified: the meaning of noise, sources of noise, effects of noise and prevention and management of noise. It was found that noise was an inevitable feature of the intensive care unit. The most common sources of noise were human-induced. It was also determined that device-induced noise, such as alarms, did not produce a lot of noise; however, when staff were late in responding, the sound transformed into noise. Furthermore, it was observed that efforts to decrease noise levels taken by staff had only a momentary effect, changing nothing in the long term because the entire team failed to implement any initiatives consistently. The majority of nurses stated that they were now becoming insensitive to the noise due to the constant exposure to device-induced noise. Conclusion: the data obtained from this study showed that especially human-induced noise threatened healthcare providers’ cognitive task functions, concentration and job performance, impaired communication and negatively affected patient safety. In addition, it was determined that any precautions taken to reduce noise were not fully effective. A team approach should be used in managing noise in intensive care units with better awareness.
  • Thumbnail Image
    PublicationOpen Access
    "Whole" vs "fragmented" approach to EAACI pollen season definitions: a multicenter study in six Southern European cities
    (Wiley, 2020) Hoffmann, Tara Maria; Şahin, Aydan Acar; Aggelidis, Xenophon; Arasi, Stefania; Barbalace, Andrea; Bourgoin, Anne; Bregu, Blerina; Brighetti, Maria Antonia; Caeiro, Elsa; Sozmen, Sule Caglayan; Caminiti, Lucia; Charpin, Denis; Couto, Mariana; Delgado, Luis; Businco, Andrea Di Rienzo; Dimier, Claire; Dimou, Maria, V; Fonseca, Joao A.; Göksel, Özlem; Güvensen, Aykut; Hernandez, Dolores; Jang, Dah Tay; Kalpaklıoğlu, Füsun; Lame, Blerta; Llusar, Ruth; Makris, Michael P.; Mazon, Angel; Mesonjesi, Eris; Nieto, Antonio; Pahus, Laurie; Pajno, Giovanni Battista; Panasiti, Ilenia; Panetta, Valentina; Papadopoulos, Nikolaos G.; Pellegrini, Elisabetta; Pelosi, Simone; Pereira, Ana Margarida; Pereira, Mariana; Pinar, Munevver; Pfaar, Oliver; Potapova, Ekaterina; Priftanji, Alfred; Psarros, Fotis; Sfika, Ifigenia; Suarez, Javier; Thibaudon, Michel; Travaglini, Alessandro; Tripodi, Salvatore; Verdier, Valentine; Villella, Valeria; Xepapadaki, Paraskevi; Matricardi, Paolo M.; Dramburg, Stephanie; Öztürk, Ayşe Bilge; Saçkesen, Cansın; Yazıcı, Duygu; Faculty Member; Faculty Member; PhD Student; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine; Graduate School of Health Sciences; Koç University Hospital; 147629; 182537; N/A
    Background: the adequate definition of pollen seasons is essential to facilitate a correct diagnosis, treatment choice, and outcome assessment in patients with seasonal allergic rhinitis. A position paper by the European Academy of Allergy and Clinical Immunology (EAACI) proposed season definitions for Northern and Middle Europe. Objective To test the pollen season definitions proposed by EAACI in six Mediterranean cities for seven pollen taxa. Methods: as part of the @IT.2020 multi-center study, pollen counts for Poaceae, Oleaceae, Fagales, Cupressaceae, Urticaceae (Parietaria spp.), and Compositae (Ambrosia spp., Artemisia spp.) were collected from January 1 to December 31, 2018. Based on these data, pollen seasons were identified according to EAACI criteria. A unified monitoring period for patients in AIT trials was created and assessed for feasibility. Results: the analysis revealed a great heterogeneity between the different locations in terms of pattern and length of the examined pollen seasons. Further, we found a fragmentation of pollen seasons in several segments (max. 8) separated by periods of low pollen counts (intercurrent periods). Potential monitoring periods included often many recording days with low pollen exposure (max. 341 days). Conclusion: the Mediterranean climate leads to challenging pollen exposure times. Monitoring periods for AIT trials based on existing definitions may include many intermittent days with low pollen concentrations. Therefore, it is necessary to find an adapted pollen season definition as individual solution for each pollen and geographical area.
  • Placeholder
    Publication
    (Bis)phosphonic acid-functionalized poly(ethyleneimine)- poly(amido amine)s for selective in vitro transfection of osteosarcoma cells
    (Amer Chemical Soc, 2021) Güven, Melek Naz; Altuncu, Seçkin; Konca, Yeliz Utku; Avcı, Duygu; N/A; Department of Chemistry; Demirci, Gözde; Acar, Havva Funda Yağcı; Master Student; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178902
    Osteosarcoma is aggressive bone cancer, whose treatment has not changed significantly for the past few decades. Although gene therapy methods have emerged as potential treatment routes, the need for efficient and nontoxic gene delivery systems targeting osteosarcoma cells remains a challenge. High-molecular-weight poly(ethyleneimine)s (PEIs) are used as universal transfection agents; however, they cause significant cytotoxicity. on the other hand, poly(amido amine)s (PAAs) are biocompatible, biodegradable polymers with promising transfection efficiency, which should be improved further. In this paper, we combined low-molecular-weight branched PEI (1800 Da) and PAA macromers functionalized with various amounts of (bis)phosphonic acid groups and pentanol (via 5-amino-1-pentanol (AP)). The (bis)phosphonic acid groups on these polymers (PAEIs) are intended to facilitate bone targeting. The molecular weights of the PAEI polymers were between 2600 and 8600 g/mol. Their cytotoxicities and green fluorescence protein (GFP) transfection efficiencies were tested on an osteosarcoma cell line (U-2 OS cells), which is challenging to transfect, and healthy muscle cells (C2C12). Both the cytotoxicity and transfection efficiency of PAEIs were affected by the phosphonic acid (via APA, 2-aminoethyl phosphonic acid) or bisphosphonic acid (via ALE, sodium alendronate) content of the polymers. PAEIs are more cytocompatible than both linear and branched 25 kDa PEI. ALE-containing PAEIs provided better transfection than APA-containing ones. The most efficient PAEI polymer, containing a 0.7:0.3 AP/ALE ratio, displayed a transfection efficiency that was five times higher than that of 25 kDa PEI with dramatically better cytocompatibility. This is comparable to FuGENE, but PAEI is more advantageous in selective transfection of the U-2 OS. This set of polymers may be promising candidates for targeted gene therapy of osteosarcoma.
  • Thumbnail Image
    PublicationOpen Access
    3D microprinting of iron platinum nanoparticle-based magnetic mobile microrobots
    (Wiley, 2021) Giltinan, Joshua; Sridhar, Varun; Bozüyük, Uğur; Sheehan, Devin; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; School of Medicine; College of Engineering; 297104
    Wireless magnetic microrobots are envisioned to revolutionize minimally invasive medicine. While many promising medical magnetic microrobots are proposed, the ones using hard magnetic materials are not mostly biocompatible, and the ones using biocompatible soft magnetic nanoparticles are magnetically very weak and, therefore, difficult to actuate. Thus, biocompatible hard magnetic micro/nanomaterials are essential toward easy-to-actuate and clinically viable 3D medical microrobots. To fill such crucial gap, this study proposes ferromagnetic and biocompatible iron platinum (FePt) nanoparticle-based 3D microprinting of microrobots using the two-photon polymerization technique. A modified one-pot synthesis method is presented for producing FePt nanoparticles in large volumes and 3D printing of helical microswimmers made from biocompatible trimethylolpropane ethoxylate triacrylate (PETA) polymer with embedded FePt nanoparticles. The 30 mu m long helical magnetic microswimmers are able to swim at speeds of over five body lengths per second at 200Hz, making them the fastest helical swimmer in the tens of micrometer length scale at the corresponding low-magnitude actuation fields of 5-10mT. It is also experimentally in vitro verified that the synthesized FePt nanoparticles are biocompatible. Thus, such 3D-printed microrobots are biocompatible and easy to actuate toward creating clinically viable future medical microrobots.
  • Placeholder
    Publication
    3D printed styrax liquidus (liquidambar orientalis miller)-loaded poly (l-lactic acid)/chitosan based wound dressing material: fabrication, characterization, and biocompatibility results
    (Elsevier, 2023) Cakmak, Hanife Yuksel; Ege, Hasan; Yilmaz, Senanur; Agturk, Gokhan; Enguven, Gozde; Sarmis, Abdurrahman; Cakmak, Zeren; Gunduz, Oguzhan; Ege, Zeynep Ruya; Yöntem, Fulya Dal; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); School of Medicine
    The medicinal plant of Styrax liquidus (ST) (sweet gum balsam) which extracted from Liquidambar orientalis Mill tree, was loaded into the 3D printed polylactic acid (PLA)/chitosan (CS) based 3D printed scaffolds to investigate its wound healing and closure effect, in this study. The morphological and chemical properties of the ST loaded 3D printed scaffolds with different concentrations (1 %, 2 %, and 3 % wt) were investigated by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR), respectively. In addition, the me-chanical and thermal properties of the materials were investigated by Tensile test and Differential Scanning Calorimetry (DSC), respectively. The antimicrobial activities of the ST loaded 3D printed scaffolds and their incubation media in the PBS (pH 7.4, at 37 degrees C for 24 h) were investigated on two Gram-positive and two Gram -negative standard pathogenic bacteria with the agar disc diffusion method. The colorimetric MTT assay was used to determine the cell viability of human fibroblast cells (CCD-1072Sk) incubated with free ST, ST loaded, and unloaded 3D printed scaffolds. The 1 % and 2 % (wt) ST loaded PLA/CS/ST 3D printed scaffolds showed an increase in the cell number. Annexin V/PI double stain assay was performed to test whether early or late apoptosis was induced in the PLA/CS/1 % ST and PLA/CS/2 % ST loaded groups and the results were consistent with the MTT assay. Furthermore, a wound healing assay was carried out to investigate the effect of ST loaded 3D printed scaffolds on wound healing in CCD-1072Sk cells. The highest wound closure compared to the control group was observed on cells treated with PLA/CS/1 % ST for 72 h. According to the results, novel biocompatible ST loaded 3D printed scaffolds with antimicrobial effect can be used as wound healing material for potential tissue engineering applications.
  • Thumbnail Image
    PublicationOpen Access
    3D printing of elastomeric bioinspired complex adhesive microstructures
    (Wiley, 2021) Dayan, Cem Balda; Chun, Sungwoo; Krishna Subbaiah, Nagaraj; Drotlef, Dirk Michael; Akolpoğlu, Mükrime Birgül; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104
    Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.
  • Placeholder
    Publication
    3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability
    (Amer Assoc Advancement Science, 2023) Zhang, Shuaizhong; Hu, Xinghao; Li, Meng; Bozuyuk, Ugur; Zhang, Rongjing; Suadiye, Eylul; Han, Jie; Wang, Fan; Onck, Patrick; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of Medicine
    Biological cilia play essential roles in self-propulsion, food capture, and cell transportation by performing coor-dinated metachronal motions. Experimental studies to emulate the biological cilia metachronal coordination are challenging at the micrometer length scale because of current limitations in fabrication methods and ma-terials. We report on the creation of wirelessly actuated magnetic artificial cilia with biocompatibility and meta-chronal programmability at the micrometer length scale. Each cilium is fabricated by direct laser printing a silk fibroin hydrogel beam affixed to a hard magnetic FePt Janus microparticle. The 3D-printed cilia show stable actuation performance, high temperature resistance, and high mechanical endurance. Programmable meta-chronal coordination can be achieved by programming the orientation of the identically magnetized FePt Janus microparticles, which enables the generation of versatile microfluidic patterns. Our platform offers an unprecedented solution to create bioinspired microcilia for programmable microfluidic systems, biomedical en-gineering, and biocompatible implants.
  • Thumbnail Image
    PublicationOpen Access
    3D-printed microrobots from design to translation
    (Nature Portfolio, 2022) Department of Mechanical Engineering; N/A; Dabbagh, Sajjad Rahmani; Sarabi, Misagh Rezapour; Birtek, Mehmet Tuğrul; Sitti, Metin; Taşoğlu, Savaş; Faculty Member; Faculty Member; Department of Mechanical Engineering; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Health Sciences; Graduate School of Sciences and Engineering; School of Medicine; College of Engineering; N/A; N/A; N/A; N/A; 297104; 291971
    Microrobots have attracted the attention of scientists owing to their unique features to accomplish tasks in hard-to-reach sites in the human body. Microrobots can be precisely actuated and maneuvered individually or in a swarm for cargo delivery, sampling, surgery, and imaging applications. In addition, microrobots have found applications in the environmental sector (e.g., water treatment). Besides, recent advancements of three-dimensional (3D) printers have enabled the high-resolution fabrication of microrobots with a faster design-production turnaround time for users with limited micromanufacturing skills. Here, the latest end applications of 3D printed microrobots are reviewed (ranging from environmental to biomedical applications) along with a brief discussion over the feasible actuation methods (e.g., on- and off-board), and practical 3D printing technologies for microrobot fabrication. In addition, as a future perspective, we discussed the potential advantages of integration of microrobots with smart materials, and conceivable benefits of implementation of artificial intelligence (AI), as well as physical intelligence (PI). Moreover, in order to facilitate bench-to-bedside translation of microrobots, current challenges impeding clinical translation of microrobots are elaborated, including entry obstacles (e.g., immune system attacks) and cumbersome standard test procedures to ensure biocompatibility.
  • Thumbnail Image
    PublicationOpen Access
    3D-printed multi-stimuli-responsive mobile micromachines
    (American Chemical Society (ACS), 2020) Lee, Yun-Woo; Ceylan, Hakan; Yasa, İmmihan Ceren; Department of Mechanical Engineering; Kılıç, Uğur; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; School of Medicine; College of Engineering
    Magnetically actuated and controlled mobile micromachines have the potential to be a key enabler for various wireless lab-on-a-chip manipulations and minimally invasive targeted therapies. However, their embodied, or physical, task execution capabilities that rely on magnetic programming and control alone can curtail their projected performance and functional diversity. Integration of stimuli-responsive materials with mobile magnetic micromachines can enhance their design toolbox, enabling independently controlled new functional capabilities to be defined. To this end, here, we show three-dimensional (3D) printed size-controllable hydrogel magnetic microscrews and microrollers that respond to changes in magnetic fields, temperature, pH, and divalent cations. We show two-way size-controllable microscrews that can reversibly swell and shrink with temperature, pH, and divalent cations for multiple cycles. We present the spatial adaptation of these microrollers for penetration through narrow channels and their potential for controlled occlusion of small capillaries (30 μm diameter). We further demonstrate one-way size-controllable microscrews that can swell with temperature up to 65% of their initial length. These hydrogel microscrews, once swollen, however, can only be degraded enzymatically for removal. Our results can inspire future applications of 3D- and 4D-printed multifunctional mobile microrobots for precisely targeted obstructive interventions (e.g., embolization) and lab- and organ-on-a-chip manipulations.