Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 27
  • Placeholder
    Publication
    A comprehensive study on the characteristic spectroscopic features of nitrogen doped graphene
    (Elsevier, 2019) Ogasawara, Hirohito; N/A; N/A; N/A; Department of Chemistry; Solati, Navid; Mobassem, Sonia; Kahraman, Abdullah; Kaya, Sarp; PhD Student; PhD Student; PhD Student; Faculty Member; Department of Chemistry; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; 116541
    Despite significant methodical improvements in the synthesis of N-doped graphene, there are still unsolved questions regarding the control of content and the configuration of nitrogen species in graphene honeycomb network. A cross-examination of X-ray photoelectron spectroscopy and Raman spectroscopy findings indicates that the nitrogen dopant amount is graphene thicknesses dependent, but the various nitrogen dopant coordination can be obtained on both double- and few-layer graphene. Characteristic defect features (D') appearing in Raman spectra upon N-doping is sensitive to nitrogen dopant coordination, graphitic-pyridinic/nitrilic species and therefore the doping level can be identified. Pyridinic and nitrilic nitrogen as primary species turn graphene to p-type semiconductor after a mild thermal treatment.
  • Placeholder
    Publication
    A profound analysis of Rb-2[PH] and Cs-2[PH] and the role of [PH](2-) ions during temperature-induced solid-solid phase transitions
    (Elsevier, 2014) Hochrein, Oliver; Zahn, Dirk; Department of Chemistry; Department of Chemistry; Somer, Mehmet Suat; Schnering, H. G. Von; Faculty Member; Other; Department of Chemistry; College of Sciences; College of Sciences; 178882; N/A
    The temperature-induced solid-solid transformation of Rb-2[PH] and Cs-2[PH] is characterized from both experiment and theory. Neutron diffraction, IR-spectroscopy and ab-initio molecular dynamics simulations reveal an asymmetric shift of the lattice constants at 80 K. The molecular mechanism of the structural transformation as identified from IR-spectroscopy and ab-initio molecular dynamics simulations is closely connected to the orientation of the [PH](2-) moieties which undergo a partial order-disorder phase transition.
  • Placeholder
    Publication
    A quantum mechanical study of the electrochemical polymerization of pyrrole
    (Elsevier Science Sa, 2001) Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    Mechanism for the electrochemical polymerization of pyrrole is studied using accurate density functional theory; (DFT) calculations. The primary emphasis is on the structures and stability of intermediates generated during various mechanisms. Structures of the radical cations, which play role in reactions, an optimized to elucidate radical-radical and radical-neutral pathways. The competing probabilities of reactions between various size oligomers are discussed in terms of their thermodynamical stability.
  • Placeholder
    Publication
    A theoretical study of structural defects in conjugated polymers
    (Elsevier Science Sa, 1999) Yurtsever, Mine; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    Accurate ab-initio calculations are performed for pyrrole and thiophene oligomers bonded through alpha and beta carbons. The thermodynamical stabilitiy of all possible binding types including the branched forms of tetramers and pentamers are compared. Employing the probabilities obtained from these calculations, a Monte Carlo type growth scheme is applied to predict branching as functions of the chain length and temperature. A high degree of branching for polypyrrole is reported whereas the linear chains dominate the structure of polythiophene.
  • Placeholder
    Publication
    Anticorrosion efficiency of ultrasonically deposited silica coatings on titanium
    (Elsevier Science Bv, 2013) N/A; N/A; Department of Chemistry; N/A; Ertan, Fatoş Sibel; Kaş, Recep; Miko, Annamaria; Birer, Özgür; Master Student; Master Student; Teaching Faculty; Researcher; Department of Chemistry; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; N/A; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A; 163509; N/A
    We utilized high intensity ultrasound to prepare coatings of silica and organically modified silica composed of multiple layers of densely packed nanoparticles. Ultrasound was used to collide nanoparticles onto an activated titanium surface with high speed. Large areas could be homogeneously coated by this method. These coatings were characterized by spectroscopy and microscopy methods and the anticorrosion efficiency in NaCl solution was evaluated by electrochemical measurements. The results indicated that the composite coatings provided good quality barrier layer on bare titanium and decreased the anodic corrosion rate. It was found that increase in the organic content of the coating shifted the passivation potential towards more positive direction. The comparison of the impedance results recorded at the corrosion potential pointed out that in each case a good quality barrier layer was formed on the titanium surface. The outstanding corrosion resistance of the composite coatings with only similar to 200 nm thickness shows that ultrasound assisted deposition can be a competitive method to obtain corrosion protective layers. (c) 2013 Elsevier B.V. All rights reserved.
  • Placeholder
    Publication
    AuPt alloy nanoparticles supported on graphitic carbon nitride: in situ synthesis and superb catalytic performance in the light-assisted hydrolytic dehydrogenation of ammonia borane
    (Elsevier, 2022) N/A; Department of Chemistry; Department of Chemistry; Aksoy, Merve; Korkut, Sibel Eken; Metin, Önder; PhD Student; Researcher; Faculty Member; Department of Chemistry; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); N/A; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM) / Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; N/A; N/A; 46962
    Addressed herein is the enhancement of catalytic activity of Pt-based nanocatalysts in the hydrolysis of ammonia borane (AB) via in-situ synthesis of bimetallic AuPt alloy nanoparticles (NPs) supported on graphitic carbon nitride (gCN). The presented in-situ synthesis protocol yielded gCN/AuxPt100-x (x = 0, 8, 15, 33) nanocatalysts with highly dispersed AuxPt100-x NPs having the average particle sizes varied in the range of 1.6-2.6 nm over the gCN nanosheets. The generated gCN/Pt92Au8 (600.3 mol H-2 mol Pt-(1) min(-1)) and gCN/Pt85Au15 (587.1 mol H2 mol Pt-1 min(-1)) nanocatalysts showed higher catalytic activity compared to gCN/Pt-100 (525.7 mol H-2 mol Pt-1 min(-1)) under white-light irradiation, attributed to the synergistic effects aroused in the AuPt alloy NPs and heterojunctions formed between gCN and AuPt alloy NPs. The detailed characterization of photophysical properties of gCN/AuxPt100-x nanocatalysts revealed that their boosted catalytic activity is attributed to the improved charge kinetics, higher light absorption, and effective electron transfer channels from gCN to the bimetallic AuPt alloy NPs. The role of photogenerated carriers in the photocatalytic AB dehydrogenation was also elucidated via scavenger studies. This study shows that gCN/AuxPt100-x nanocatalysts can be prepared in situ during the hydrolysis of AB at room temperature and the yielded nanocatalysts have a significant role in boosting the hydrogen production from the light-assisted hydrolysis of AB.
  • Placeholder
    Publication
    Defect structure in aliovalently-doped and isovalently-substituted PbTiO3 nano-powders
    (Institute of Physics (IOP) Publishing, 2010) Erdem, Emre; Jakes, Peter; Parashar, S. K. S.; Ruediger, Andreas; Eichel, Ruediger-A; N/A; Department of Chemistry; Kiraz, Kamil; Somer, Mehmet Suat; Researcher; Faculty Member; Department of Chemistry; N/A; College of Sciences; N/A; 178882
    The defect structure of Fe3+-, Cu2+-, Mn4+- and Gd3+-doped PbTiO3 nano-powders has been studied by electron paramagnetic resonance (EPR) spectroscopy. Analogous to the situation for 'bulk' ferroelectrics, Fe3+ and Cu2+ act as acceptor-type functional centers that form defect complexes with charge-compensating oxygen vacancies. The corresponding defect dipoles are aligned along the direction of spontaneous polarization, PS, and possess an additional defect polarization, P-D. Upon the transition to the nano-regime, the defect structure is modified such that orientations perpendicular to P-S, (Fe-Ti'-V-O(center dot center dot))(perpendicular to)(center dot) and (Cu-Ti ''-V-O(center dot center dot))(perpendicular to)(x) also become realized. Moreover, the binding energy for the defect complexes is lowered such that instead 'free' Fe-Ti' and V-O(center dot center dot)-centers are formed. As a consequence, the concentration of mobile V-O(center dot center dot) that enhances the ionic conductivity through drift diffusion is increased for the nano-powders. Finally, in the nano-regime the ferroelectric 'hardening' is expected to be considerably decreased as compared to the 'bulk' compounds. In contrast to the acceptor-type dopants, the donor-type Gd3+ dopant is incorporated as an 'isolated' functional center, where charge compensation by means of lead vacancies is performed in distant coordination spheres.
  • Placeholder
    Publication
    Development of color tunable aqueous cds-cysteine quantum dots with improved efficiency and investigation of cytotoxicity
    (Amer Scientific Publishers, 2010) N/A; N/A; Department of Chemistry; Department of Chemistry; Öztürk, Sinan S.; Selçukbiricik, Fatih; Acar, Havva Funda Yağcı; Master Student; N/A; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; N/A; N/A; 178902
    Cysteine capped aqueous CdS quantum dots with improved luminescence and excellent colloidal-luminescence stability were developed in a simple one pot aqueous method from safer precursors at low temperatures. Investigation of size and luminescence as a function of cysteine amount, pH and temperature revealed an optimum value for all these variables to maximize the quantum yield. Cysteine:Cd ratio of 2, reaction pH of 9.5 and synthesis at room temperature-30 degrees C emerged as the best conditions for the highest QY of 19%. Yet, QY can be improved up to 55% if QDs are cleaned from excess cysteine and ions and redispersed in pH 7 medium. Size of the QDs, therefore the color of luminescence, can be tuned by the reaction temperature in this simple process. Higher temperatures provide larger particles. Cell uptake and cell viability studies in a wide range of doses and different incubation times with MCF-7 and HeLa cell lines revealed cell dependent differences. MCF-7 cells uptake more ODs but are much more viable than HeLa cells. At low doses such as 0.025 mg QD/ml all cells are viable. At 24 h incubation times MCF-7 cells demonstrate viability above 75% up to 0.15 mg QD/ml. On the other hand HeLa cells loose viability with increasing dose.
  • Placeholder
    Publication
    Development of highly stable and luminescent aqueous CdS quantum dots with the poly(acrylic acid)/mercaptoacetic acid binary coating system
    (Amer Scientific Publishers, 2009) Lieberwirth, I.; Department of Chemistry; N/A; Department of Chemical and Biological Engineering; Acar, Havva Funda Yağcı; Çelebi, Serdar; Serttunalı, Nazlı İpek; Faculty Member; Master Student; Undergraduate Student; Department of Chemistry; Department of Chemical and Biological Engineering; College of Sciences; Graduate School of Sciences and Engineering; College of Engineering; 178902; N/A; N/A
    Highly stable and luminescent CdS quantum dots (QD) were prepared in aqueous solutions via in situ capping of the crystals with the poly(acrylic acid) (PAA) and mercaptoacetic acid (MAA) binary mixtures. The effect of reaction temperature and coating composition on the particle size, colloidal stability and luminescence were investigated and discussed in detail. CdS QDs coated with either PAA or MAA were also prepared and compared in terms of properties. CdS-MAA QDs were highly luminescent but increasing reaction temperature caused an increase in the crystal size and a significant decrease in the quantum yield (QY). Although less luminescent and bigger than CdS-MAA, CdS-PAA QDs maintained the room temperature size and QY at higher reaction temperatures. CdS-MAA QDs lacked long term colloidal stability whereas CdS-PAA QDs showed excellent stability over a year. Use of PAA/MAA mixture as a coating for CdS nanoparticles during the synthesis provided excellent stability, high QY and ability to tune the size and the color of the emission. Combination of all of these properties can be achieved only with the mixed coating. CdS coated with PAA/MAA at 40/60 ratio displayed the highest QY (50% of Rhodamine B) among the other compositions.
  • Placeholder
    Publication
    Effect of UV/ozone irradiation on the surface properties of electrospun webs and films prepared from polydimethylsiloxane-urea copolymers
    (Elsevier Science Bv, 2012) Department of Chemistry; N/A; N/A; N/A; Department of Chemistry; Yılgör, Emel; Kaymakçı, Orkun; Işık, Mehmet; Bilgin, Sevilay; Yılgör, İskender; Researcher; Researcher; Researcher; PhD Student; Faculty Member; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Sciences; N/A; N/A; College of Social Sciences and Humanities; College of Sciences; N/A; N/A; N/A; N/A; 24181
    Highly hydrophobic surfaces of silicone-urea copolymers were transformed into hydrophilic ones upon UV/ozone treatment. The extent of surface modification was strongly dependent on the sample preparation method and the exposure time. The physical and chemical changes at the copolymer surfaces were analyzed by spectroscopic (XPS, ATR-FTIR), microscopic (SEM) techniques and static water contact angle measurements. ATR-FTIR spectra clearly showed the dramatic change in the strongly hydrogen bonded urea hard segments and the degradation of dimethylsiloxane units in silicone-urea copolymers. XPS results revealed the formation of SiOx on the surface, which gradually increased with exposure time. After 3 h of UV/ozone exposure, Si( 2p) binding energy shifted from 101.9 to 102.85 eV, which is a clear indication of an increase in the oxidation state of silicon. The deterioration of microroughness of the electrospun webs upon UV/ozone exposure, which was revealed by SEM, resulted in a dramatic decrease in the static water contact angle values from 129 to 62 degrees. These results clearly show that UV/ozone process is a very simple and facile method to transform hydrophobic silicone-urea copolymer surfaces into fairly hydrophilic ones.