Publication:
AuPt alloy nanoparticles supported on graphitic carbon nitride: in situ synthesis and superb catalytic performance in the light-assisted hydrolytic dehydrogenation of ammonia borane

Placeholder

School / College / Institute

Organizational Unit
Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Addressed herein is the enhancement of catalytic activity of Pt-based nanocatalysts in the hydrolysis of ammonia borane (AB) via in-situ synthesis of bimetallic AuPt alloy nanoparticles (NPs) supported on graphitic carbon nitride (gCN). The presented in-situ synthesis protocol yielded gCN/AuxPt100-x (x = 0, 8, 15, 33) nanocatalysts with highly dispersed AuxPt100-x NPs having the average particle sizes varied in the range of 1.6-2.6 nm over the gCN nanosheets. The generated gCN/Pt92Au8 (600.3 mol H-2 mol Pt-(1) min(-1)) and gCN/Pt85Au15 (587.1 mol H2 mol Pt-1 min(-1)) nanocatalysts showed higher catalytic activity compared to gCN/Pt-100 (525.7 mol H-2 mol Pt-1 min(-1)) under white-light irradiation, attributed to the synergistic effects aroused in the AuPt alloy NPs and heterojunctions formed between gCN and AuPt alloy NPs. The detailed characterization of photophysical properties of gCN/AuxPt100-x nanocatalysts revealed that their boosted catalytic activity is attributed to the improved charge kinetics, higher light absorption, and effective electron transfer channels from gCN to the bimetallic AuPt alloy NPs. The role of photogenerated carriers in the photocatalytic AB dehydrogenation was also elucidated via scavenger studies. This study shows that gCN/AuxPt100-x nanocatalysts can be prepared in situ during the hydrolysis of AB at room temperature and the yielded nanocatalysts have a significant role in boosting the hydrogen production from the light-assisted hydrolysis of AB.

Source

Publisher

Elsevier

Subject

Chemistry, Physical, Materials science, Coatings, Films, Physics, Applied physics, Condensed matter

Citation

Has Part

Source

Applied Surface Science

Book Series Title

Edition

DOI

10.1016/j.apsusc.2022.154286

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details