Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
6 results
Search Results
Publication Metadata only Detection of human kappa-opioid antibody using microresonators with integrated optical readout(Elsevier advanced Technology, 2010) N/A; N/A; N/A; N/A; Department of Mechanical Engineering; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Department of Mechanical Engineering; Timurdoğan, Erman; Özber, Natali; Nargül, Sezin; Yavuz, Serhat; Kılıç, M. Salih; Kavaklı, İbrahim Halil; Ürey, Hakan; Alaca, Burhanettin Erdem; PhD Student; Master Student; PhD Student; Master Student; Resercher; Faculty Member; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; N/A; 40319; 8579; 115108Label-free detection of the interaction between hexahistidine-tagged human kappa-opioid receptor membrane protein and anti-His antibody is demonstrated in liquid by an optical microelectromechanical system utilizing electromagnetically actuated microresonators Shift in resonance frequency due to accretion of mass on the sensitive surface of microresonators is monitored via an integrated optical readout a frequency resolution of 2 Hz is obtained Together with a sensitivity of 7 ppm/(ng/ml)) this leads to a minimum detectable antibody concentration of 57 ng/ml for a 50-kHz device the measurement principle is shown to impart immunity to environmental noise, facilitate operation in liquid media and bring about the prospect for further miniaturization of actuator and readout leading to a portable biochemical sensor.Publication Metadata only Fabrication of 1D ZNO nanostructures on mems cantilever for VOC sensor application(Elsevier, 2014) Kosemen, Arif; Öztürk, Sadullah; Yerli, Yusuf; Öztürk, Zafer Ziya; Department of Electrical and Electronics Engineering; N/A; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Kılınç, Necmettin; Çakmak, Onur; Ermek, Erhan; Ürey, Hakan; Researcher; PhD Student; Other; Faculty Member; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; 59959; N/A; N/A; 8579This study reports the fabrication method and sensing performance for novel 1D zinc oxide (ZnO) nanorods and nanotubes grown on nickel MEMS cantilevers. The fabrication of the nanostructures and the cantilevers are simple and low-cost using standard lithography, electrodeposition, and hydrothermal etching processes. 1D ZnO nanostructures increase the total sensitive area for biological and chemical sensor applications. We performed experiments with various VOCs with a real-time sensor system developed in our laboratory. While Ni microcantilevers produced no signal, ZnO nanostructure coated microcantilevers showed good sensitivity and repeatable changes. Furthermore, the nanotube coated microcantilevers showed more than 10 fold increase in sensitivity compared to the nanorod coated microcantilevers which can be explained to the fact that ZnO nanotubes have higher surface area and subsurface oxygen vacancies and these provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods. The tests are performed using dynamic mode of operation near resonant frequency using magnetic actuation and optical sensing. The phase stability and the limit of detection of ZnO nanotube coated microcantilevers exposed to diethylamine (DEA) were 0.02 degrees and lower than 10 ppm, respectively. ZnO nanostructure coated microcantilevers have good potential for VOC sensor applications especially for amine groups.Publication Open Access FR4-based electromagnetic energy harvester for wireless tyre sensor nodes(Elsevier, 2009) Department of Electrical and Electronics Engineering; Hatipoğlu, Gökhan; Ürey, Hakan; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; N/A; 8579An electromagnetic (EM) power generator having 46 Hz resonance frequency is designed to scavenge mechanical vibrations occurring in tyres due to lyre-road contact. The major innovation is the use of FR4 as a structural spring material as well as utilizing a spacer and stopper mechanism increasing the shock resistance by limiting the maximum deflection. The novel magnet assembly and spacer design provide high power density. The tangential acceleration waveforms of typical tyre rotation is used as an input in the experiments and 0.4 mW power is obtained over a 100 Omega load resistance for 15g peak-to-peak amplitude at 22,83 Hz, corresponding to about 150 kph vehicle speed. Maximum acceleration is limited with the shaker, larger power values are expected in actual operation. The performance is obtained off-resonance and superior to resonant Silicon MEMS based scavengers.Publication Open Access Highly sensitive optical sensor for hydrogen gas based on a polymer microcylinder ring resonator(Elsevier, 2020) Eryürek, Mustafa; Department of Physics; Department of Chemistry; Department of Electrical and Electronics Engineering; Bavili, Nima; Balkan, Timuçin; Morova, Berna; Uysallı, Yiğit; Kaya, Sarp; Kiraz, Alper; Researcher; Researcher; PhD Student; Faculty Member; Faculty Member; Department of Physics; Department of Chemistry; Department of Electrical and Electronics Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; 116541; 22542A highly sensitive platform is demonstrated for hydrogen gas (H-2) sensing based on a polymer microcylinder ring resonator (PMRR) obtained by an optical fiber coated with an inner nanofilm of amorphous palladium (Pd) and an outer polymer layer of polydimethylsiloxane (PDMS) permeable to H-2. The sensing scheme is based on monitoring the spectral shifts of high-quality optical resonances called whispering gallery modes (WGMs) that propagate in the vicinity of the outer rim of the PDMS layer without being affected by the absorption and scattering losses caused by the Pd nanofilm. WGMs are excited by a single-mode tapered optical fiber evanescently coupled to the PMRR. The observed reversible spectral shifts of the WGMs are induced by changes in the diameter of the PDMS layer caused by expansion or contraction of the Pd nanofilm exposed to varying concentrations of H-2. Maximum spectral shift sensitivity of 140 pm/% H-2, a minimum response time of 95 s, and minimum limit of detection of similar to 60 ppm were measured for sensors prepared with different thicknesses of the amorphous Pd nanofilm and tested in the H-2 concentration range up to 1%, having nitrogen gas (N-2) as a carrier. Experiments were also conducted with Pd nanofilms annealed in air or N-2 atmosphere after the deposition. In both cases, smaller sensitivities were observed due to the formation of larger grains within the film, resulting in slower diffusion and reduced solubility of H in the Pd layer. The impacts of oxygen gas and humidity on sensor performance were also studied.Publication Metadata only Hydrogen sensing properties of ZnO nanorods: effects of annealing, temperature and electrode structure(Pergamon-Elsevier Science Ltd, 2014) Öztürk, Sadullah; Torun, Imren; Kosemen, Arif; Sahin, Yasin; Öztürk, Zafer Ziya; Department of Electrical and Electronics Engineering; Kılınç, Necmettin; Researcher; Department of Electrical and Electronics Engineering; College of Engineering; 59959In this study, the hydrogen (H-2) sensing properties of vertically aligned zinc oxide (ZnO) nanorods were investigated depending on annealing, Pd coating, temperature and electrode structure. ZnO nanorods were fabricated by using hydrothermal method on a glass substrate and an indium tin oxide (ITO) coated glass substrate. In order to determine the effects of annealing on the H2 sensor performance, the nanorods were heated at 500 C in dry air. H2 sensing measurements were done in the temperature range of 25-200 degrees C. It was found that, the sensor response of Pd coated ZnO nanorods were much higher than the uncoated nanorods due to the catalytic effect of Pd thin film. Moreover, the un-annealed samples showed better sensor response than the annealed samples due to the number of oxygen deficiency. In addition, the lateral electrode structure showed higher sensor response than the sandwich electrode structure.Publication Metadata only MEMS biosensor for detection of Hepatitis A and C viruses in serum(Elsevier Advanced Technology, 2011) N/A; N/A; Department of Mechanical Engineering; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Timurdoğan, Erman; Alaca, Burhanettin Erdem; Kavaklı, İbrahim Halil; Ürey, Hakan; PhD Student; Faculty Member; Faculty Member; Faculty Member; Department of Mechanical Engineering; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; College of Engineering; N/A; 115108; 40319; 8579Resonant microcantilever arrays are developed for the purpose of label-free and real-time analyte monitoring and biomolecule detection. MEMS cantilevers made of electroplated nickel are functionalized with Hepatitis antibodies. Hepatitis A and C antigens at different concentrations are introduced in undiluted bovine serum. All preparation and measurement steps are carried out in the liquid within a specifically designed flowcell without ever drying the cantilevers throughout the experiment. Both actuation and sensing are done remotely and therefore the MEMS cantilevers have no electrical connections, allowing for easily disposable sensor chips. Actuation is achieved using an electromagnet and the interferometric optical sensing is achieved using laser illumination and embedded diffraction gratings at the tip of each cantilever. Resonant frequency of the cantilevers in dynamic motion is monitored using a self-sustaining closed-loop control circuit and a frequency counter. Specificity is demonstrated by detecting both Hepatitis A and Hepatitis C antigens and their negative controls. This is the first report of Hepatitis antigen detection by resonant cantilevers exposed to undiluted serum. A dynamic range in excess of 1000 and with a minimum detectable concentration limit of 0.1 ng/ml (1.66 pM) is achieved for both Hepatitis A and C. This result is comparable to labeled detection methods such as ELISA.