Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 74
  • Thumbnail Image
    PublicationOpen Access
    A hierarchical solution approach for a multicommodity distribution problem under a special cost structure
    (Elsevier, 2012) Koca, Esra; Department of Industrial Engineering; Yıldırım, Emre Alper; Faculty Member; Department of Industrial Engineering; College of Engineering
    Motivated by the spare parts distribution system of a major automotive manufacturer in Turkey, we consider a multicommodity distribution problem from a central depot to a number of geographically dispersed demand points. The distribution of the items is carried out by a set of identical vehicles. The demand of each demand point can be satisfied by several vehicles and a single vehicle is allowed to serve multiple demand points. For a given vehicle, the cost structure is dictated by the farthest demand point from the depot among all demand points served by that vehicle. The objective is to satisfy the demand of each demand point with the minimum total distribution cost. We present a novel integer linear programming formulation of the problem as a variant of the network design problem. The resulting optimization problem becomes computationally infeasible for real-life problems due to the large number of integer variables. In an attempt to circumvent this disadvantage of using the direct formulation especially for larger problems, we propose a Hierarchical Approach that is aimed at solving the problem in two stages using partial demand aggregation followed by a disaggregation scheme. We study the properties of the solution returned by the Hierarchical Approach. We perform computational studies on a data set adapted from a major automotive manufacturer in Turkey. Our results reveal that the Hierarchical Approach significantly outperforms the direct formulation approach in terms of both the running time and the quality of the resulting solution especially on large instances.
  • Thumbnail Image
    PublicationOpen Access
    A model-based heuristic to the min max K-arc routing for connectivity problem
    (Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014) Akbari, Vahid; Department of Industrial Engineering; Salman, Fatma Sibel; Faculty Member; Department of Industrial Engineering; College of Engineering; 178838
    We consider the post-disaster road clearing problem with the goal of restoring network connectivity in shortest time. Given a set of blocked edges in the road network, teams positioned at depot nodes are dispatched to open a subset of them that reconnects the network. After a team finishes working on an edge, others can traverse it. The problem is to find coordinated routes for the teams. We generate a feasible solution using a constructive heuristic algorithm after solving a relaxed mixed integer program. In almost 70 percent of the instances generated both randomly and from Istanbul data, the relaxation solution turned out to be feasible, i.e. optimal for the original problem.
  • Thumbnail Image
    PublicationOpen Access
    A multi-criteria decision analysis to include environmental, social, and cultural issues in the sustainable aggregate production plans
    (Elsevier, 2019) Department of Industrial Engineering; Türkay, Metin; Rasmi, Seyyed Amir Babak; Kazan, Cem; Faculty Member; PhD Student; Department of Industrial Engineering; Graduate School of Sciences and Engineering; 24956; N/A; N/A
    Aggregate production planning (APP) that is an important concept of supply chain management (SCM), is one of the tools to determine production rates, inventory levels, and workforce requirements for fulfilling customer demands in a multi-period setting. Traditional APP models employ a single objective function to optimize monetary issues only. In this paper, we present a multi-objective APP model to analyze economic, social, environmental, and cultural pillars inclusively; moreover, each pillar includes several sub-pillars in the model. The resulting model includes an accurate representation of the problem with binary and continuous variables under sustainability considerations. We illustrate the effectiveness of the model in an appliance manufacturer and solve the problem using an exact solution method for multi-objective mixed-integer linear programs (MOMILP). We find a large number of the non-dominated (ND) points in the objective function space and analyze their trade-offs systematically. We show how this framework supports multiple criteria decision making process in the APP problems in the presence of sustainability considerations. Our approach provides a comprehensive analysis of the ND points of sustainable APP (SAPP) problems, and hence, the trade-offs of objective functions are insightful to the decision makers.
  • Thumbnail Image
    PublicationOpen Access
    A multiperiod stochastic production planning and sourcing problem with service level constraints
    (Springer, 2005) Yıldırım, Işıl; Department of Business Administration; Department of Industrial Engineering; Tan, Barış; Karaesmen, Fikri; Faculty Member; Faculty Member; Department of Business Administration; Department of Industrial Engineering; College of Administrative Sciences and Economics; College of Engineering; 28600; 3579
    We study a stochastic multiperiod production planning and sourcing problem of a manufacturer with a number of plants and/or subcontractors. Each source, i.e. each plant and subcontractor, has a different production cost, capacity, and lead time. The manufacturer has to meet the demand for different products according to the service level requirements set by its customers. The demand for each product in each period is random. We present a methodology that a manufacturer can utilize to make its production and sourcing decisions, i.e., to decide how much to produce, when to produce, where to produce, how much inventory to carry, etc. This methodology is based on a mathematical programming approach. The randomness in demand and related probabilistic service level constraints are integrated in a deterministic mathematical program by adding a number of additional linear constraints. Using a rolling horizon approach that solves the deterministic equivalent problem based on the available data at each time period yields an approximate solution to the original dynamic problem. We show that this approach yields the same result as the base stock policy for a single plant with stationary demand. For a system with dual sources, we show that the results obtained from solving the deterministic equivalent model on a rolling horizon gives similar results to a threshold subcontracting policy.
  • Thumbnail Image
    PublicationOpen Access
    A prospective prediction tool for understanding Crimean-Congo haemorrhagic fever dynamics in Turkey
    (Elsevier, 2020) N/A; N/A; Department of Industrial Engineering; Ak, Çiğdem; Ergönül, Önder; Gönen, Mehmet; Faculty Member; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; School of Medicine; College of Engineering; N/A; 110398; 237468
    Objectives: we aimed to develop a prospective prediction tool on Crimean-Congo haemorrhagic fever (CCHF) to identify geographic regions at risk. The tool could support public health decision-makers in implementation of an effective control strategy in a timely manner. Methods: we used monthly surveillance data between 2004 and 2015 to predict case counts between 2016 and 2017 prospectively. The Turkish nationwide surveillance data set collected by the Ministry of Health contained 10 411 confirmed CCHF cases. We collected potential explanatory covariates about climate, land use, and animal and human populations at risk to capture spatiotemporal transmission dynamics. We developed a structured Gaussian process algorithm and prospectively tested this tool predicting the future year's cases given past years' cases. Results: we predicted the annual cases in 2016 and 2017 as 438 and 341, whereas the observed cases were 432 and 343, respectively. Pearson's correlation coefficient and normalized root mean squared error values for 2016 and 2017 predictions were (0.83; 0.58) and (0.87; 0.52), respectively. The most important covariates were found to be the number of settlements with fewer than 25 000 inhabitants, latitude, longitude and potential evapotranspiration (evaporation and transpiration). Conclusions: main driving factors of CCHF dynamics were human population at risk in rural areas, geographical dependency and climate effect on ticks. Our model was able to prospectively predict the numbers of CCHF cases. Our proof-of-concept study also provided insight for understanding possible mechanisms of infectious diseases and found important directions for practice and policy to combat against emerging infectious diseases.
  • Thumbnail Image
    PublicationOpen Access
    Agricultural planning of annual plants under demand, maturation, harvest, and yield risk
    (Elsevier, 2012) Department of Industrial Engineering; Tan, Barış; Faculty Member; Department of Industrial Engineering; College of Engineering; College of Administrative Sciences and Economics; N/A; 28600
    In this study we present a planning methodology for a firm whose objective is to match the random supply of annual premium fruits and vegetables from a number of contracted farms and the random demand from the retailers during the planning period. The supply uncertainty is due to the uncertainty of the maturation time, harvest time, and yield. The demand uncertainty is the uncertainty of weekly demand from the retailers. We provide a planning methodology to determine the farm areas and the seeding times for annual plants that survive for only one growing season in such a way that the expected total profit is maximized. Both the single period and the multi period cases are analyzed depending on the type of the plant. The performance of the solution methodology is evaluated by using numerical experiments. These experiments show that the proposed methodology matches random supply and random demand in a very effective way and improves the expected profit substantially compared to the planning approaches where the uncertainties are not taken into consideration. (c) 2012 Elsevier B.V. All rights reserved.
  • Thumbnail Image
    PublicationOpen Access
    An efficient framework to identify key miRNA-mRNA regulatory modules in cancer
    (Oxford University Press (OUP), 2020) N/A; Department of Industrial Engineering; Mokhtaridoost, Milad; Gönen, Mehmet; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; School of Medicine
    Motivation: micro-RNAs (miRNAs) are known as the important components of RNA silencing and post-transcriptional gene regulation, and they interact with messenger RNAs (mRNAs) either by degradation or by translational repression. miRNA alterations have a significant impact on the formation and progression of human cancers. Accordingly, it is important to establish computational methods with high predictive performance to identify cancer-specific miRNA-mRNA regulatory modules. Results: we presented a two-step framework to model miRNA-mRNA relationships and identify cancer-specific modules between miRNAs and mRNAs from their matched expression profiles of more than 9000 primary tumors. We first estimated the regulatory matrix between miRNA and mRNA expression profiles by solving multiple linear programming problems. We then formulated a unified regularized factor regression (RFR) model that simultaneously estimates the effective number of modules (i.e. latent factors) and extracts modules by decomposing regulatory matrix into two low-rank matrices. Our RFR model groups correlated miRNAs together and correlated mRNAs together, and also controls sparsity levels of both matrices. These attributes lead to interpretable results with high predictive performance. We applied our method on a very comprehensive data collection by including 32 TCGA cancer types. To find the biological relevance of our approach, we performed functional gene set enrichment and survival analyses. A large portion of the identified modules are significantly enriched in Hallmark, PID and KEGG pathways/gene sets. To validate the identified modules, we also performed literature validation as well as validation using experimentally supportedmiRTarBase database.
  • Thumbnail Image
    PublicationOpen Access
    An empirical analysis of the main drivers affecting the buyer surplus in E-auctions
    (Taylor _ Francis, 2018) Department of Business Administration; Department of Industrial Engineering; Karabağ, Oktay; Tan, Barış; Faculty Member; Department of Business Administration; Department of Industrial Engineering; College of Administrative Sciences and Economics; College of Engineering; N/A; 28600
    We empirically examine the impacts of the product category, the auction format, the 2008 global financial crisis, the group purchasing, the contract type, the platform ownership, and the number of participating suppliers on the buyer surplus obtained from e-auctions. To this end, we collect a unique dataset from a purchasing organisation that offers e-auction solutions to its corporate customers. By using a standard Tobit model, we show that the product categories, the auction type, and the number of participating suppliers have significant effects on the decrease in the procurement prices with respect to the minimum of the initial submitted bids. It is observed that the 2008 global financial crisis led to an increase in the buyer surplus. We classify the product categories into three groups based on their impacts on the average of the decrease in the procurement prices. We show that the average decrease in procurement prices is higher for the group purchasing option than for the individual buying option. It is concluded that the types of contract between buyers and auctioneer and the platform ownership have no statistically significant effects on the average decrease in procurement prices.
  • Thumbnail Image
    PublicationOpen Access
    An improved lower bound on the competitive ratio of deterministic online algorithms for the multi-agent k-Canadian Traveler Problem
    (Finding Press, 2022) Shiri, Davood; Department of Industrial Engineering; Salman, Fatma Sibel; Faculty Member; Department of Industrial Engineering; College of Engineering; 178838
    We present an improved lower bound on the competitive ratio of deterministic online algorithms for the multi-agent k-Canadian Traveler Problem.
  • Thumbnail Image
    PublicationOpen Access
    An integrated data-driven method using deep learning for a newsvendor problem with unobservable features
    (Elsevier, 2022) Pirayesh Neghab, D.; Khayyati, S.; Department of Industrial Engineering; Karaesmen, Fikri; Faculty Member; Department of Industrial Engineering; College of Engineering; 3579
    We consider a single-period inventory problem with random demand with both directly observable and unobservable features that impact the demand distribution. With the recent advances in data collection and analysis technologies, data-driven approaches to classical inventory management problems have gained traction. Specially, machine learning methods are increasingly being integrated into optimization problems. Although data-driven approaches have been developed for the newsvendor problem, they often consider learning from the available data and optimizing the system separate tasks to be performed in sequence. One of the setbacks of this approach is that in the learning phase, costly and cheap mistakes receive equal attention and, in the optimization phase, the optimizer is blind to the confidence of the learner in its estimates for different regions of the problem. To remedy this, we consider an integrated learning and optimization problem for optimizing a newsvendor's strategy facing a complex correlated demand with additional information about the unobservable state of the system. We give an algorithm based on integrating optimization, neural networks and hidden Markov models and use numerical experiments to show the efficiency of our method. In an empirical experiment, the method outperforms the best competitor benchmark by more than 27%, on average, in terms of the system cost. We give further analyses of the performance of the method using a set of numerical experiments.