Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 183
  • Placeholder
    Publication
    3D printed kombucha biomaterial as a tissue scaffold and L929 cell cytotoxicity assay
    (Wiley, 2024) Yanbakan, Edaguel; Tuncel, Tugba; Kocak Sezgin, Ayse; Bozoglan, Emirhan; Berikten, Derya; Kar, Fatih; Department of Molecular Biology and Genetics; Bağlan, İlkyaz; Department of Molecular Biology and Genetics; College of Sciences
    Tissue engineering includes the construction of tissue-organ scaffold. The advantage of three-dimensional scaffolds over two-dimensional scaffolds is that they provide homeostasis for a longer time. The microbial community in Symbiotic culture of bacteria and yeast (SCOBY) can be a source for kombucha (kombu tea) production. In this study, it was aimed to investigate the usage of SCOBY, which produces bacterial cellulose, as a biomaterial and 3D scaffold material. 3D printable biomaterial was obtained by partial hydrolysis of oolong tea and black tea kombucha biofilms. In order to investigate the usage of 3D kombucha biomaterial as a tissue scaffold, "L929 cell line 3D cell culture" was created and cell viability was tested in the biomaterial. At the end of the 21st day, black tea showed 51% and oolong tea 73% viability. The cytotoxicity of the materials prepared by lyophilizing oolong and black tea kombucha beverages in fibroblast cell culture was determined. Black tea IC50 value: 7.53 mg, oolong tea IC50 value is found as 6.05 mg. Fibroblast viability in 3D biomaterial + lyophilized oolong and black tea kombucha beverages, which were created using the amounts determined to these values, were investigated by cell culture Fibroblasts in lyophilized and 3D biomaterial showed viability of 58% in black tea and 78% in oolong tea at the end of the 7th day. In SEM analysis, it was concluded that fibroblast cells created adhesion to the biomaterial. 3D biomaterial from kombucha mushroom culture can be used as tissue scaffold and biomaterial.
  • Thumbnail Image
    PublicationOpen Access
    A bacteria-derived tail anchor localizes to peroxisomes in yeast and mammalian cells
    (Nature Publishing Group (NPG), 2018) Seferoğlu, Ayşe Bengisu; Department of Molecular Biology and Genetics; Dunn, Cory David; Keskin, Abdurrahman; Akdoğan, Emel; Lutfullahoglu-Bal, Guleycan; Department of Molecular Biology and Genetics; College of Sciences
    Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.
  • Placeholder
    Publication
    A brief atlas of insulin
    (Bentham Science, 2022) N/A; Department of Molecular Biology and Genetics; Ayan, Esra; Demirci, Hasan; PhD Student; Faculty Member; Department of Molecular Biology and Genetics; Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); Graduate School of Sciences and Engineering; College of Sciences; N/A; 307350
    Insulin is an essential factor for mammalian organisms: a regulator of glucose metabolism and other key signaling pathways. Insulin is also a multifunctional hormone whose absence can cause many diseases. Recombinant insulin is widely used in the treatment of diabetes. Understanding insulin, biosimilars, and biobetters from a holistic perspective will help pharmacologically user-friendly molecules design and develop personalized medicine-oriented therapeutic strategies for diabetes. Additionally, it helps to understand the underlying mechanism of other insulin-dependent metabolic disorders. The purpose of this atlas is to review insulin from a biotechnologi-cal, basic science, and clinical perspective, explain nearly all insulin-related disorders and their underlying molecular mechanisms, explore exogenous/recombinant production strategies of patented and research-level insulin/analogs, and highlight their mechanism of action from a structural per-spective. Combined with computational analysis, comparisons of insulin and analogs also provide novel information about the structural dynamics of insulin.
  • Thumbnail Image
    PublicationOpen Access
    A cartridge based sensor array platform for multiple coagulation measurements from plasma
    (Royal Society of Chemistry (RSC), 2015) Bulut, Serpil; Yaralioglu, G. G.; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; Çakmak, Onur; Ermek, Erhan; Kılınç, Necmettin; Barış, İbrahim; Kavaklı, İbrahim Halil; Ürey, Hakan; PhD Student; Other; Researcher; Teaching Faculty; Faculty Member; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Sciences; N/A; 109991; N/A; 111629; 40319; 8579
    This paper proposes a MEMS-based sensor array enabling multiple clot-time tests for plasma in one disposable microfluidic cartridge. The versatile LoC (Lab-on-Chip) platform technology is demonstrated here for real-time coagulation tests (activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)). The system has a reader unit and a disposable cartridge. The reader has no electrical connections to the cartridge. This enables simple and low-cost cartridge designs and avoids reliability problems associated with electrical connections. The cartridge consists of microfluidic channels and MEMS microcantilevers placed in each channel. The microcantilevers are made of electroplated nickel. They are actuated remotely using an external electro-coil and the read-out is also conducted remotely using a laser. The phase difference between the cantilever oscillation and the coil drive is monitored in real time. During coagulation, the viscosity of the blood plasma increases resulting in a change in the phase read-out. The proposed assay was tested on human and control plasma samples for PT and aPTT measurements. PT and aPTT measurements from control plasma samples are comparable with the manufacturer's datasheet and the commercial reference device. The measurement system has an overall 7.28% and 6.33% CV for PT and aPTT, respectively. For further implementation, the microfluidic channels of the cartridge were functionalized for PT and aPTT tests by drying specific reagents in each channel. Since simultaneous PT and aPTT measurements are needed in order to properly evaluate the coagulation system, one of the most prominent features of the proposed assay is enabling parallel measurement of different coagulation parameters. Additionally, the design of the cartridge and the read-out system as well as the obtained reproducible results with 10 mu l of the plasma samples suggest an opportunity for a possible point-of-care application.
  • Placeholder
    Publication
    A chemically inducible organelle rerouting assay to probe primary cilium assembly, maintenance, and disassembly in cultured cells
    (Humana Press Inc., 2024) Department of Molecular Biology and Genetics; İşsezer, Fatma Başak Turan; Ercan, Muhammed Erdem; Karalar, Elif Nur Fırat; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; College of Sciences
    The primary cilium is a conserved, microtubule-based organelle that protrudes from the surface of most vertebrate cells as well as sensory cells of many organisms. It transduces extracellular chemical and mechanical cues to regulate diverse cellular processes during development and physiology. Loss-of-function studies via RNA interference and CRISPR/Cas9-mediated gene knockouts have been the main tool for elucidating the functions of proteins, protein complexes, and organelles implicated in cilium biology. However, these methods are limited in studying acute spatiotemporal functions of proteins as well as the connection between their cellular positioning and functions. A powerful approach based on inducible recruitment of plus or minus end-directed molecular motors to the protein of interest enables fast and precise control of protein activity in time and in space. In this chapter, we present a chemically inducible heterodimerization method for functional perturbation of centriolar satellites, an emerging membrane-less organelle involved in cilium biogenesis and function. The method we present is based on rerouting of centriolar satellites to the cell center or the periphery in mammalian epithelial cells. We also describe how this method can be applied to study the temporal functions of centriolar satellites during primary cilium assembly, maintenance, and disassembly.
  • Placeholder
    Publication
    A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude
    (Elsevier, 2020) Akyel, Yasemin Kübra; Yılmaz, Fatma; Öztürk, Nuri; Öztürk, Narin; Okyar, Alper; N/A; N/A; Department of Chemical and Biological Engineering; N/A; Department of Molecular Biology and Genetics; Department of Industrial Engineering; Department of Chemical and Biological Engineering; Doruk, Yağmur Umay; Yarparvar, Darya; Gül, Şeref; Taşkın, Ali Cihan; Barış, İbrahim; Türkay, Metin; Kavaklı, İbrahim Halil; Master Student; PhD Student; Researcher; Other; Teaching Faculty; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Department of Industrial Engineering; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; College of Sciences; College of Engineering; College of Engineering; N/A; N/A; N/A; 291296; 111629; 24956; 40319
    Proper function of many physiological processes requires a robust circadian clock. Disruptions of the circadian clock can result in metabolic diseases, mood disorders, and accelerated aging. Therefore, identifying small molecules that specifically modulate regulatory core clock proteins may potentially enable better management of these disorders. In this study, we applied a structure-based molecular-docking approach to find small molecules that specifically bind to the core circadian regulator, the transcription factor circadian locomotor output cycles kaput (CLOCK). We identified 100 candidate molecules by virtual screening of ?2 million small molecules for those predicted to bind closely to the interface in CLOCK that interacts with its transcriptional co-regulator, Brain and muscle Arnt-like protein-1 (BMAL1). Using a mammalian two-hybrid system, real-time monitoring of circadian rhythm in U2OS cells, and various biochemical assays, we tested these compounds experimentally and found one, named CLK8, that specifically bound to and interfered with CLOCK activity. We show that CLK8 disrupts the interaction between CLOCK and BMAL1 and interferes with nuclear translocation of CLOCK both in vivo and in vitro. Results from further experiments indicated that CLK8 enhances the amplitude of the cellular circadian rhythm by stabilizing the negative arm of the transcription/translation feedback loop without affecting period length. Our results reveal CLK8 as a tool for further studies of CLOCK's role in circadian rhythm amplitude regulation and as a potential candidate for therapeutic development to manage disorders associated with dampened circadian rhythms.
  • Thumbnail Image
    PublicationOpen Access
    A new series of indeno[1,2-c]pyrazoles as EGFR TK inhibitors for NSCLC therapy
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Özdemir, A.; Sever, B.; Tateishi, H.; Otsuka, M.; Fujita, M.; Altıntop, M.D.; Department of Molecular Biology and Genetics; Çiftçi, Halil İbrahim; Department of Molecular Biology and Genetics; College of Sciences
    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out as a potential EGFR TKI for the treatment of NSCLC.
  • Placeholder
    Publication
    A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans
    (Oxford University Press (OUP), 2014) Pellegrino, Renata; Goel, Namni; Cardinale, Christopher J.; Dinges, David F.; Kuna, Samuel T.; Maislin, Greg; Van Dongen, Hans P. A.; Tufik, Sergio; Hogenesch, John B.; Hakonarson, Hakon; Pack, Allan I.; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Kavaklı, İbrahim Halil; Faculty Member; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; College of Engineering; 40319
    Study Objectives: Earlier work described a mutation in DEC2 also known as BHLHE41 (basic helix-loop-helix family member e41) as causal in a family of short sleepers, who needed just 6 h sleep per night. We evaluated whether there were other variants of this gene in two well-phenotyped cohorts. Design: Sequencing of the BHLHE41 gene, electroencephalographic data, and delta power analysis and functional studies using cell-based luciferase. Results: We identified new variants of the BHLHE41 gene in two cohorts who had either acute sleep deprivation (n = 200) or chronic partial sleep deprivation (n = 217). One variant, Y362H, at another location in the same exon occurred in one twin in a dizygotic twin pair and was associated with reduced sleep duration, less recovery sleep following sleep deprivation, and fewer performance lapses during sleep deprivation than the homozygous twin. Both twins had almost identical amounts of non rapid eye movement (NREM) sleep. This variant reduced the ability of BHLHE41 to suppress CLOCK/BMAL1 and NPAS2/BMAL1 transactivation in vitro. Another variant in the same exome had no effect on sleep or response to sleep deprivation and no effect on CLOCK/BMAL1 transactivation. Random mutagenesis identified a number of other variants of BHLHE41 that affect its function. Conclusions: There are a number of mutations of BHLHE41. Mutations reduce total sleep while maintaining NREM sleep and provide resistance to the effects of sleep loss. Mutations that affect sleep also modify the normal inhibition of BHLHE41 of CLOCK/BMAL1 transactivation. Thus, clock mechanisms are likely involved in setting sleep length and the magnitude of sleep homeostasis.
  • Thumbnail Image
    PublicationOpen Access
    A proximity mapping journey into the biology of the mammalian centrosome/cilium complex
    (Multidisciplinary Digital Publishing Institute (MDPI), 2020) Department of Molecular Biology and Genetics; Arslanhan, Melis Dilara; Gülensoy, Dila; Karalar, Elif Nur Fırat; Faculty Member; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; 206349
    The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated in various human diseases including cancer, developmental disorders and neurodegenerative diseases. To better understand these disease connections, the molecular underpinnings of the assembly, maintenance and dynamic adaptations of the centrosome/cilium complex need to be uncovered with exquisite detail. Application of proximity-based labeling methods to the centrosome/cilium complex generated spatial and temporal interaction maps for its components and provided key insights into these questions. In this review, we first describe the structure and cell cycle-linked regulation of the centrosome/cilium complex. Next, we explain the inherent biochemical and temporal limitations in probing the structure and function of the centrosome/cilium complex and describe how proximity-based labeling approaches have addressed them. Finally, we explore current insights into the knowledge we gained from the proximity mapping studies as it pertains to centrosome and cilium biogenesis and systematic characterization of the centrosome, cilium and centriolar satellite interactomes.
  • Placeholder
    Publication
    A small molecule identified through an in silico screen inhibits Aurora B–INCENP interaction
    (Wiley, 2016) N/A; N/A; N/A; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Ünsal, Esra; Harmanda, Büşra; Erman, Burak; Master Student; N/A; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; N/A; Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; N/A; N/A; N/A; 179997; 105301
    Aurora B is a serine/threonine kinase that has a central role in the regulation of mitosis. The observation of Aurora B overexpression in cancer makes it a promising target to develop antitumoral inhibitors. We describe a new potential inhibitor that exclusively targets the interaction site of Aurora B and its activator INCENP. We performed a structure-based virtual screening and determined five potential candidates of 200000 compounds, which selectively bind to the Aurora B