Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 604
  • Placeholder
    Publication
    3D articulated shape segmentation using motion information
    (Institute of Electrical and Electronics Engineers (IEEE), 2010) Department of Computer Engineering; N/A; Yemez, Yücel; Kalafatlar, Emre; Faculty Member; Master Student; Department of Computer Engineering; College of Engineering; Graduate School of Sciences and Engineering; 107907; N/A
    We present a method for segmentation of articulated 3D shapes by incorporating the motion information obtained from time-varying models. We assume that the articulated shape is given in the form of a mesh sequence with fixed connectivity so that the inter-frame vertex correspondences, hence the vertex movements, are known a priori. We use different postures of an articulated shape in multiple frames to constitute an affinity matrix which encodes both temporal and spatial similarities between surface points. The shape is then decomposed into segments in spectral domain based on the affinity matrix using a standard K-means clustering algorithm. The performance of the proposed segmentation method is demonstrated on the mesh sequence of a human actor.
  • Placeholder
    Publication
    3D coffee stains
    (Royal Soc Chemistry, 2017) N/A; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Department of Molecular Biology and Genetics; Department of Chemistry; Department of Chemistry; Department of Electrical and Electronics Engineering; Doğru-Yüksel, Itır Bakış; Söz, Çağla Koşak; Press, Daniel Aaron; Melikov, Rustamzhon; Begar, Efe; Çonkar, Deniz; Karalar, Elif Nur Fırat; Yılgör, Emel; Yılgör, İskender; Nizamoğlu, Sedat; PhD Student; PhD Student; Researcher; PhD Student; PhD Student; PhD Student; PhD Student; Faculty Member; Researcher; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Department of Chemistry; Department of Electrical and Electronics Engineering; N/A; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A; N/A; N/A; N/A; N/A; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; 206349; N/A; 24181; 130295
    When a liquid droplet (e.g., coffee, wine, etc.) is splattered on a surface, the droplet dries in a ring-shaped stain. This widely observed pattern in everyday life occurs due to the phenomenon known as a coffee stain (or coffee ring) effect. While the droplet dries, the capillary flow moves and deposits the particles toward the pinned edges, which shows a 2D ring-like structure. Here we demonstrate the transition from a 2D to a 3D coffee stain that has a well-defined and hollow sphere-like structure, when the substrate surface is switched from hydrophilic to superhydrophobic. The 3D stain formation starts with the evaporation of the pinned aqueous colloidal droplet placed on a superhydrophobic surface that facilitates the particle flow towards the liquid-air interface. This leads to spherical skin formation and a cavity in the droplet. Afterwards the water loss in the cavity due to pervaporation leads to bubble nucleation and growth, until complete evaporation of the solvent. In addition to the superhydrophobicity of the surface, the concentration of the solution also has a significant effect on 3D coffee stain formation. Advantageously, 3D coffee stain formation in a pendant droplet configuration enables the construction of all-protein lasers by integrating silk fibroin with fluorescent proteins. No tools, components and/or human intervention are needed after the construction process is initiated; therefore, 3D coffee-stains hold promise for building self-assembled and functional 3D constructs and devices from colloidal solutions.
  • Placeholder
    Publication
    [BMIM] [PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance
    (Amer Chemical Soc, 2016) N/A; N/A; N/A; N/A; N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Kınık, Fatma Pelin; Altıntaş, Çiğdem; Balcı, Volkan; Koyutürk, Burak; Uzun, Alper; Keskin, Seda; Master Student; Researcher; PhD Student; Master Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; 59917; 40548
    Experiments were combined with atomically detailed simulations and density functional theory (DFT) calculations to understand the effect of incorporation of an ionic liquid (IL), 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), into a metal organic framework (MOF with a zeolitic imidazolate framework), ZIF-8, on the CO2 separation performance. The interactions between [BMIM] [PF6] and ZIF-8 were examined in deep detail, and their consequences on CO2/CH4, CO2/N-2, and CH4/N-2 separation have been elucidated by using experimental measurements complemented by DFT calculations and atomically detailed simulations. Results suggest that IL-MOF interactions strongly affect the gas affinity of materials at low pressure, whereas available pore volume plays a key role for gas adsorption at high pressures. Direct interactions between IL and MOF lead to at least a doubling of CO2/CH4 and CO2/N-2 selectivities of ZIF-8. These results provide opportunities for rational design and development of IL-incorporated MOFs with exceptional selectivity for target gas separation applications.
  • Placeholder
    Publication
    A bi-criteria optimization model to analyze the impacts of electric vehicles on costs and emissions
    (Elsevier, 2017) N/A; N/A; Department of Industrial Engineering; Kabatepe, Bora; Türkay, Metin; Master Student; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 24956
    Electric vehicles (EV) are emerging as a mobility solution to reduce emissions in the transportation sector. The studies environmental impact analysis of EVs in the literature are based on the average energy mix or pre-defined generation scenarios and construct policy recommendations with a cost minimization objective. However, the environmental performance of EVs depends on the source of the marginal electricity provided to the grid and single objective models do not provide a thorough analysis on the economic and environmental impacts of EVs. In this paper, these gaps are addressed by a four step methodology that analyzes the effects of EVs under different charging and market penetration scenarios. The methodology includes a bi-criteria optimization model representing the electricity market operations. The results from a real-life case analysis show that EVs decrease costs and emissions significantly compared to conventional vehicles.
  • Placeholder
    Publication
    A blind fractionally spaced equalization algorithm with global convergence
    (IEEE, 2007) Department of Electrical and Electronics Engineering; Erdoğan, Alper Tunga; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 41624
    In this article we present a fractionally spaced extension of the SubGradient based Blind equalization Algorithm (SGBA). The basic features of the proposed algorithm are the non-linear constraint on the search vector and the selection of the weighting and step size applied to the search vector. It is proven that the algorithm is globally convergent to a perfect equalization point under the well known equalizability conditions for the fractionally spaced setting. The simulation results provided at the end of the article illustrates the relative merit of the proposed algorithm in comparison to the state of the art algorithms.
  • Placeholder
    Publication
    A CAM-based path generation method for rapid prototyping applications
    (Springer London Ltd, 2011) N/A; Department of Mechanical Engineering; Lazoğlu, İsmail; N/A; Faculty Member; Department of Mechanical Engineering; Manufacturing and Automation Research Center (MARC); N/A; College of Engineering; N/A; 179391
    A wide range of rapid prototyping (RP) methods are available commercially. Even though the hardware and production materials of these RP methods differ, their production techniques are built on the same idea: layer-by-layer material additive manufacturing. Whatever the material is used, it is deposited, vulcanized, or melted by following a pre-determined path, and each layer is stowed on the previous one to create the 3D model which is designed by using a computer-aided design program. The path which is followed while creating the model is very crucial. In this paper, a novel idea for path generation for RP processes is introduced. This new method is based on computer numerical controlled milling operation. Although the RP process and the milling process are completely opposite of each other since one of them is an additive and the other one is a subtractive method, the paths which are followed for these operations are very similar and based on the same idea: The progress goes on layer by layer. In this novel method, cutter location source files are used to create paths for RP processes. Examples of the prototypes produced by using this new method are also presented in the paper.
  • Placeholder
    Publication
    A chemically inducible organelle rerouting assay to probe primary cilium assembly, maintenance, and disassembly in cultured cells
    (Humana Press Inc., 2024) Department of Molecular Biology and Genetics; İşsezer, Fatma Başak Turan; Ercan, Muhammed Erdem; Karalar, Elif Nur Fırat; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; College of Sciences
    The primary cilium is a conserved, microtubule-based organelle that protrudes from the surface of most vertebrate cells as well as sensory cells of many organisms. It transduces extracellular chemical and mechanical cues to regulate diverse cellular processes during development and physiology. Loss-of-function studies via RNA interference and CRISPR/Cas9-mediated gene knockouts have been the main tool for elucidating the functions of proteins, protein complexes, and organelles implicated in cilium biology. However, these methods are limited in studying acute spatiotemporal functions of proteins as well as the connection between their cellular positioning and functions. A powerful approach based on inducible recruitment of plus or minus end-directed molecular motors to the protein of interest enables fast and precise control of protein activity in time and in space. In this chapter, we present a chemically inducible heterodimerization method for functional perturbation of centriolar satellites, an emerging membrane-less organelle involved in cilium biogenesis and function. The method we present is based on rerouting of centriolar satellites to the cell center or the periphery in mammalian epithelial cells. We also describe how this method can be applied to study the temporal functions of centriolar satellites during primary cilium assembly, maintenance, and disassembly.
  • Placeholder
    Publication
    A class of bounded component analysis algorithms for the separation of both independent and dependent sources
    (IEEE-inst Electrical Electronics Engineers inc, 2013) Department of Electrical and Electronics Engineering; Erdoğan, Alper Tunga; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 41624
    Bounded Component analysis (BCa) is a recent approach which enables the separation of both dependent and independent signals from their mixtures. in this approach, under the practical source boundedness assumption, the widely used statistical independence assumption is replaced by a more generic domain separability assumption. This article introduces a geometric framework for the development of Bounded Component analysis algorithms. Two main geometric objects related to the separator output samples, namely Principal Hyper-Ellipsoid and Bounding Hyper-Rectangle, Are introduced. the maximization of the volume ratio of these objects, and its extensions, Are introduced as relevant optimization problems for Bounded Component analysis. the article also provides corresponding iterative algorithms for both real and complex sources. the numerical examples illustrate the potential advantage of the proposed BCa framework in terms of correlated source separation capability as well as performance improvement for short data records.
  • Placeholder
    Publication
    A dual-mode quadruple precision floating-point divider
    (IEEE, 2006) N/A; N/A; N/A; İşseven, Aytunç; Akkaş, Ahmet; Master Student; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A
    Many scientific applications require more accurate computations than double precision or double-extended precision floating-point arithmetic. This paper presents the design of a dual-mode quadruple precision floating-point divider that also supports two parallel double precision division. A radix- 4 SRT division algorithm with minimal redundancy is used to implement the dual-mode quadruple precision floating-point divider. To estimate area and worst case delay, a double, a quadruple, a dual-mode double, and a dual-mode quadruple precision floating-point division units are implemented in VHDL and synthesized. The synthesis results show that the dual-mode quadruple precision divider requires 22% more area than the quadruple precision divider and the worst case delay is 1% longer. A quadruple precision division takes fifty nine cycles and two parallel double precision division take twenty nine cycles.
  • Placeholder
    Publication
    A dynamical formulation of one-dimensional scattering theory and its applications in optics
    (Academic Press Inc Elsevier Science, 2014) NA; Department of Mathematics; Mostafazadeh, Ali; Faculty Member; Department of Mathematics; College of Sciences; 4231
    We develop a dynamical formulation of one-dimensional scattering theory where the reflection and transmission amplitudes for a general, possibly complex and energy-dependent, scattering potential are given as solutions of a set of dynamical equations. By decoupling and partially integrating these equations, we reduce the scattering problem to a second order linear differential equation with universal initial conditions that is equivalent to an initial-value time-independent Schrodinger equation. We give explicit formulas for the reflection and transmission amplitudes in terms of the solution of either of these equations and employ them to outline an inverse-scattering method for constructing finite-range potentials with desirable scattering properties at any prescribed wavelength. In particular, we construct optical potentials displaying threshold lasing, antilasing, and unidirectional invisibility.