Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
66 results
Filters
Advanced Search
Filter by
Settings
Search Results
Publication Metadata only A comprehensive study on the characteristic spectroscopic features of nitrogen doped graphene(Elsevier, 2019) Ogasawara, Hirohito; N/A; N/A; N/A; Department of Chemistry; Solati, Navid; Mobassem, Sonia; Kahraman, Abdullah; Kaya, Sarp; PhD Student; PhD Student; PhD Student; Faculty Member; Department of Chemistry; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; 116541Despite significant methodical improvements in the synthesis of N-doped graphene, there are still unsolved questions regarding the control of content and the configuration of nitrogen species in graphene honeycomb network. A cross-examination of X-ray photoelectron spectroscopy and Raman spectroscopy findings indicates that the nitrogen dopant amount is graphene thicknesses dependent, but the various nitrogen dopant coordination can be obtained on both double- and few-layer graphene. Characteristic defect features (D') appearing in Raman spectra upon N-doping is sensitive to nitrogen dopant coordination, graphitic-pyridinic/nitrilic species and therefore the doping level can be identified. Pyridinic and nitrilic nitrogen as primary species turn graphene to p-type semiconductor after a mild thermal treatment.Publication Metadata only A profound analysis of Rb-2[PH] and Cs-2[PH] and the role of [PH](2-) ions during temperature-induced solid-solid phase transitions(Elsevier, 2014) Hochrein, Oliver; Zahn, Dirk; Department of Chemistry; Department of Chemistry; Somer, Mehmet Suat; Schnering, H. G. Von; Faculty Member; Other; Department of Chemistry; College of Sciences; College of Sciences; 178882; N/AThe temperature-induced solid-solid transformation of Rb-2[PH] and Cs-2[PH] is characterized from both experiment and theory. Neutron diffraction, IR-spectroscopy and ab-initio molecular dynamics simulations reveal an asymmetric shift of the lattice constants at 80 K. The molecular mechanism of the structural transformation as identified from IR-spectroscopy and ab-initio molecular dynamics simulations is closely connected to the orientation of the [PH](2-) moieties which undergo a partial order-disorder phase transition.Publication Metadata only A quantum mechanical study of the electrochemical polymerization of pyrrole(Elsevier Science Sa, 2001) Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129Mechanism for the electrochemical polymerization of pyrrole is studied using accurate density functional theory; (DFT) calculations. The primary emphasis is on the structures and stability of intermediates generated during various mechanisms. Structures of the radical cations, which play role in reactions, an optimized to elucidate radical-radical and radical-neutral pathways. The competing probabilities of reactions between various size oligomers are discussed in terms of their thermodynamical stability.Publication Metadata only A simple quantitative model of neuromodulation, part i: ion flow neural ion channels(Pergamon-Elsevier Science Ltd, 2024) Werneck, Linda; Han, Mertcan; Yildiz, Erdost; Keip, Marc-Andre; Ortiz, Michael; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of MedicineWe develop a simple model of ionic current through neuronal membranes as a function of membrane potential and extracellular ion concentration. The model combines a simplified Poisson-Nernst-Planck (PNP) model of ion transport through individual ion channels with channel activation functions calibrated from ad hoc in-house experimental data. The simplified PNP model is validated against bacterial gramicidin A ion channel data. The calibrated model accounts for the transport of calcium, sodium, potassium, and chloride and exhibits remarkable agreement with the experimentally measured current-voltage curves for the differentiated human neural cells.Publication Metadata only A theoretical study of structural defects in conjugated polymers(Elsevier Science Sa, 1999) Yurtsever, Mine; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129Accurate ab-initio calculations are performed for pyrrole and thiophene oligomers bonded through alpha and beta carbons. The thermodynamical stabilitiy of all possible binding types including the branched forms of tetramers and pentamers are compared. Employing the probabilities obtained from these calculations, a Monte Carlo type growth scheme is applied to predict branching as functions of the chain length and temperature. A high degree of branching for polypyrrole is reported whereas the linear chains dominate the structure of polythiophene.Publication Metadata only Advances in constraint theories of rubber-like elasticity of polymers(Pergamon-Elsevier Science Ltd, 2010) Department of Chemical and Biological Engineering; Erman, Burak; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 179997Advances in the constraint theories of rubber elasticity during the past few years, based on the constrained junction, tube, and slip-link models, are cited and discussed. (C) 2009 Elsevier Ltd. All rights reserved.Publication Metadata only Analysis of an optical biosensor based on elastic light scattering from diamond-, glass-, and sapphire microspheres(Wiley-V C H Verlag Gmbh, 2012) Murib, Mohammed S.; Tran, Anh Quang; De Ceuninck, Ward; Schöning, Michael J.; Nesladek, Milos; Wagner, Patrick; Department of Physics; Serpengüzel, Ali; Faculty Member; Department of Physics; College of Sciences; 27855Deoxyribonucleic acid (DNA) and protein recognition are now standard tools in biology. In addition, the special optical properties of microsphere resonators expressed by the high quality factor (Q-factor) of whispering gallery modes (WGMs) or morphology dependent resonances (MDRs) have attracted the attention of the biophotonic community. Microsphere-based biosensors are considered as powerful candidates to achieve label-free recognition of single molecules due to the high sensitivity of their WGMs. When the microsphere surface is modified with biomolecules, the effective refractive index and the effective size of the microsphere change resulting in a resonant wavelength shift. The transverse electric (TE) and the transverse magnetic (TM) elastic light scattering intensity of electromagnetic waves at 600 and 1400?nm are numerically calculated for DNA and unspecific binding of proteins to the microsphere surface. The effect of changing the optical properties was studied for diamond (refractive index 2.34), glass (refractive index 1.50), and sapphire (refractive index 1.75) microspheres with a 50 mu m radius. The mode spacing, the linewidth of WGMs, and the shift of resonant wavelength due to the change in radius and refractive index, were analyzed by numerical simulations. Preliminary results of unspecific binding of biomolecules are presented. The calculated shift in WGMs can be used for biomolecules detection.Publication Metadata only Analysis of the knight shift data on Li and Zn substituted YBa2Cu3O6+x(Elsevier, 2001) Department of Physics; Bulut, Nejat; Faculty Member; Department of Physics; College of Sciences; N/AThe Knight shift data on Li and Zn substituted YBa2Cu3O6+x are analyzed using an itinerant model with short-range antiferromagnetic correlations. The model parameters, which are determined by fitting the experimental data on the transverse nuclear relaxation rate T-2(-1) of pure YBa2Cu3O6+x, are used to calculate the Knight shifts for various nuclei around a nonmagnetic impurity located in the CuO2 planes. The calculations are carried out for Li and Zn impurities substituted into optimally doped and underdoped YBa2Cu3O6+x. The results are compared with the Li-7 and Y-89 Knight shift measurements on these materials. (C) 2001 Elsevier Science B.V. All rights reserved.Publication Metadata only Anticorrosion efficiency of ultrasonically deposited silica coatings on titanium(Elsevier Science Bv, 2013) N/A; N/A; Department of Chemistry; N/A; Ertan, Fatoş Sibel; Kaş, Recep; Miko, Annamaria; Birer, Özgür; Master Student; Master Student; Teaching Faculty; Researcher; Department of Chemistry; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; N/A; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A; 163509; N/AWe utilized high intensity ultrasound to prepare coatings of silica and organically modified silica composed of multiple layers of densely packed nanoparticles. Ultrasound was used to collide nanoparticles onto an activated titanium surface with high speed. Large areas could be homogeneously coated by this method. These coatings were characterized by spectroscopy and microscopy methods and the anticorrosion efficiency in NaCl solution was evaluated by electrochemical measurements. The results indicated that the composite coatings provided good quality barrier layer on bare titanium and decreased the anodic corrosion rate. It was found that increase in the organic content of the coating shifted the passivation potential towards more positive direction. The comparison of the impedance results recorded at the corrosion potential pointed out that in each case a good quality barrier layer was formed on the titanium surface. The outstanding corrosion resistance of the composite coatings with only similar to 200 nm thickness shows that ultrasound assisted deposition can be a competitive method to obtain corrosion protective layers. (c) 2013 Elsevier B.V. All rights reserved.Publication Metadata only Artificial-goosebump-driven microactuation(Nature Portfolio, 2024) Zhang, Mingchao; Pal, Aniket; Lyu, Xianglong; Wu, Yingdan; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of MedicineMicroactuators provide controllable driving forces for precise positioning, manipulation and operation at the microscale. Development of microactuators using active materials is often hampered by their fabrication complexity and limited motion at small scales. Here we report light-fuelled artificial goosebumps to actuate passive microstructures, inspired by the natural reaction of hair bristling (piloerection) on biological skin. We use light-responsive liquid crystal elastomers as the responsive artificial skin to move three-dimensionally printed passive polymer microstructures. When exposed to a programmable femtosecond laser, the liquid crystal elastomer skin generates localized artificial goosebumps, resulting in precise actuation of the surrounding microstructures. Such microactuation can tilt micro-mirrors for the controlled manipulation of light reflection and disassemble capillary-force-induced self-assembled microstructures globally and locally. We demonstrate the potential application of the proposed microactuation system for information storage. This methodology provides precise, localized and controllable manipulation of microstructures, opening new possibilities for the development of programmable micromachines. Light-induced artificial goosebumps on liquid crystal elastomer skin are used to precisely manipulate passive microstructures, achieving a localized and controllable system for programmable micromachines.