Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 152
  • Thumbnail Image
    PublicationOpen Access
    3D bioprinted organ?on?chips
    (Wiley, 2022) Mustafaoğlu, Nur; Zhang, Yu Shrike; Department of Mechanical Engineering; N/A; N/A; Dabbagh, Sajjad Rahmani; Sarabi, Misagh Rezapour; Birtek, Mehmet Tuğrul; Taşoğlu, Savaş; Faculty Member; Department of Mechanical Engineering; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); College of Engineering; Graduate School of Social Sciences and Humanities; Graduate School of Sciences and Engineering; N/A; N/A; N/A; 291971
    Organ-on-a-chip (OOC) platforms recapitulate human in vivo-like conditions more realistically compared to many animal models and conventional two-dimensional cell cultures. OOC setups benefit from continuous perfusion of cell cultures through microfluidic channels, which promotes cell viability and activities. Moreover, microfluidic chips allow the integration of biosensors for real-time monitoring and analysis of cell interactions and responses to administered drugs. Three-dimensional (3D) bioprinting enables the fabrication of multicell OOC platforms with sophisticated 3D structures that more closely mimic human tissues. 3D-bioprinted OOC platforms are promising tools for understanding the functions of organs, disruptive influences of diseases on organ functionality, and screening the efficacy as well as toxicity of drugs on organs. Here, common 3D bioprinting techniques, advantages, and limitations of each method are reviewed. Additionally, recent advances, applications, and potentials of 3D-bioprinted OOC platforms for emulating various human organs are presented. Last, current challenges and future perspectives of OOC platforms are discussed.
  • Thumbnail Image
    PublicationOpen Access
    3D printing of elastomeric bioinspired complex adhesive microstructures
    (Wiley, 2021) Dayan, Cem Balda; Chun, Sungwoo; Krishna Subbaiah, Nagaraj; Drotlef, Dirk Michael; Akolpoğlu, Mükrime Birgül; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104
    Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.
  • Thumbnail Image
    PublicationOpen Access
    A diversity combination model incorporating an inward bias for interaural time-level difference cue integration in sound lateralization
    (Multidisciplinary Digital Publishing Institute (MDPI), 2020) N/A; Department of Computer Engineering; Mojtahedi, Sina; Erzin, Engin; Ungan, Pekcan; Faculty Member; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; School of Medicine; N/A; 34503; N/A
    A sound source with non-zero azimuth leads to interaural time level differences (ITD and ILD). Studies on hearing system imply that these cues are encoded in different parts of the brain, but combined to produce a single lateralization percept as evidenced by experiments indicating trading between them. According to the duplex theory of sound lateralization, ITD and ILD play a more significant role in low-frequency and high-frequency stimulations, respectively. In this study, ITD and ILD, which were extracted from a generic head-related transfer functions, were imposed on a complex sound consisting of two low- and seven high-frequency tones. Two-alternative forced-choice behavioral tests were employed to assess the accuracy in identifying a change in lateralization. Based on a diversity combination model and using the error rate data obtained from the tests, the weights of the ITD and ILD cues in their integration were determined by incorporating a bias observed for inward shifts. The weights of the two cues were found to change with the azimuth of the sound source. While the ILD appears to be the optimal cue for the azimuths near the midline, the ITD and ILD weights turn to be balanced for the azimuths far from the midline.
  • Thumbnail Image
    PublicationOpen Access
    A micropatterned human-specific neuroepithelial tissue for modeling gene and drug-induced neurodevelopmental defects
    (Wiley, 2021) Sahni, Geetika; Chang, Shu-Yung; Meng, Jeremy Teo Choon; Tan, Jerome Zu Yao; Fatien, Jean Jacques Clement; Bonnard, Carine; Utami, Kagistia Hana; Chan, Puck Wee; Tan, Thong Teck; Altunoglu, Umut; Pouladi, Mahmoud; Toh, Yi-Chin; Kayserili, Hülya; Reversade, Bruno; Faculty Member; School of Medicine; 7945; N/A
    The generation of structurally standardized human pluripotent stem cell (hPSC)-derived neural embryonic tissues has the potential to model genetic and environmental mediators of early neurodevelopmental defects. Current neural patterning systems have so far focused on directing cell fate specification spatio-temporally but not morphogenetic processes. Here, the formation of a structurally reproducible and highly-organized neuroepithelium (NE) tissue is directed from hPSCs, which recapitulates morphogenetic cellular processes relevant to early neurulation. These include having a continuous, polarized epithelium and a distinct invagination-like folding, where primitive ectodermal cells undergo E-to-N-cadherin switching and apical constriction as they acquire a NE fate. This is accomplished by spatio-temporal patterning of the mesoendoderm, which guides the development and self-organization of the adjacent primitive ectoderm into the NE. It is uncovered that TGF beta signaling emanating from endodermal cells support tissue folding of the prospective NE. Evaluation of NE tissue structural dysmorphia, which is uniquely achievable in the model, enables the detection of apical constriction and cell adhesion dysfunctions in patient-derived hPSCs as well as differentiating between different classes of neural tube defect-inducing drugs.
  • Thumbnail Image
    PublicationOpen Access
    A multi-state coarse grained modeling approach for an intrinsically disordered peptide
    (American Institute of Physics (AIP) Publishing, 2017) Department of Chemical and Biological Engineering; N/A; Sayar, Mehmet; Dalgıçdır, Cahit; Ramezanghorbani, Farhad; Faculty Member; PhD Student; Department of Chemical and Biological Engineering; College of Engineering; Graduate School of Sciences and Engineering; 109820; N/A; N/A
    Many proteins display a marginally stable tertiary structure, which can be altered via external stimuli. Since a majority of coarse grained (CG) models are aimed at structure prediction, their success for an intrinsically disordered peptide's conformational space with marginal stability and sensitivity to external stimuli cannot be taken for granted. In this study, by using the LK alpha 14 peptide as a test system, we demonstrate a bottom-up approach for constructing a multi-state CG model, which can capture the conformational behavior of this peptide in three distinct environments with a unique set of interaction parameters. LK alpha 14 is disordered in dilute solutions; however, it strictly adopts the alpha-helix conformation upon aggregation or when in contact with a hydrophobic/hydrophilic interface. Our bottom-up approach combines a generic base model, that is unbiased for any particular secondary structure, with nonbonded interactions which represent hydrogen bonds, electrostatics, and hydrophobic forces. We demonstrate that by using carefully designed all atom potential of mean force calculations from all three states of interest, one can get a balanced representation of the nonbonded interactions. Our CG model behaves intrinsically disordered in bulk water, folds into an alpha-helix in the presence of an interface or a neighboring peptide, and is stable as a tetrameric unit, successfully reproducing the all atom molecular dynamics simulations and experimental results.
  • Thumbnail Image
    PublicationOpen Access
    A near-infrared benzothiazole-based chemodosimeter for rapid and selective detection of hydrogen sulfide
    (Turkish Chemical Society / Türkiye Kimya Derneği, 2021) Department of Chemistry; Kölemen, Safacan; Faculty Member; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); College of Sciences; 272051
    Hydrogen sulfide (H2S) is a biologically relevant gaseous molecule, which involves in a wide variety of physiological and pathological processes. Thus, detection of H2S is highly valuable in order to clarify its complex roles. In this study, a new benzothiazole-based donor-acceptor type H 2S selective chemodosimeter (HP-1) was synthesized and its H2S detection capabilities were investigated in aqueous solutions. HP-1 exhibited a red-shifted absorption signal at 530 nm and a near-infrared (NIR) fluorescence peak at 680 nm as a result of enhanced intramolecular charge transfer (ICT) in the presence of H2S, which enabled a selective and very rapid ratiometric fluorescent detection. HP-1 was also showed to be highly sensitive toward H2S with a very low limit of detection value.
  • Thumbnail Image
    PublicationOpen Access
    A new class of porous materials for efficient CO2 separation: ionic liquid/graphene aerogel composites
    (Elsevier, 2021) Department of Chemical and Biological Engineering; N/A; Department of Chemistry; Zeeshan, Muhammad; Yalçın, Kaan; Keskin, Seda; Uzun, Alper; Öztuna, Feriha Eylül Saraç; Ünal, Uğur; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Chemistry; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; N/A; N/A; 40548; 59917; N/A; 42079
    Here, we report a new post-synthesis modification strategy for functionalizing reduced graphene aerogels (rGAs) towards an exceptional CO2 separation performance. 1-N-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was impregnated on a rGA, prepared by reducing GA at 700 degrees C, at various ionic liquid (IL) loadings of 5, 10, 30, and 50 wt%. The resulting composites were characterized in deep detail by X-ray photoelectron spectroscopy, X-ray diffraction, N-2 physical adsorption measurements, scanning electron microscopy, Fourier transform infrared and Raman spectroscopies, and thermogravimetric analysis. Results indicated the presence of interactions between the rGA surface and the anion of the IL, potentially improving the CO2 affinity. Volumetric gas adsorption measurements using these materials showed that the deposition of [BMIM][PF6] on rGA surface at an IL loading of 50 wt% boosts the CO2/CH4 selectivity by more than 20-times, exceeding an absolute value of 120, a remarkably higher CO2/CH4 selectivity compared to that of other functionalized materials under similar operating conditions. Tunability of both the IL structure and the surface characteristics of rGA offer a tremendous degree of flexibility for the rational design of these IL/rGA composites towards high performance in gas separation applications.
  • Thumbnail Image
    PublicationOpen Access
    A new series of indeno[1,2-c]pyrazoles as EGFR TK inhibitors for NSCLC therapy
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Özdemir, A.; Sever, B.; Tateishi, H.; Otsuka, M.; Fujita, M.; Altıntop, M.D.; Department of Molecular Biology and Genetics; Çiftçi, Halil İbrahim; Department of Molecular Biology and Genetics; College of Sciences
    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out as a potential EGFR TKI for the treatment of NSCLC.
  • Thumbnail Image
    PublicationOpen Access
    A novel method for PEGylation of chitosan nanoparticles through photopolymerization
    (Royal Society of Chemistry (RSC), 2019) Department of Chemical and Biological Engineering; Bozüyük, Uğur; Gökulu, İpek Simay; Doğan, Nihal Olcay; Kızılel, Seda; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; N/A; N/A; N/A; 28376
    An ultrafast and convenient method for PEGylation of chitosan nanoparticles has been established through a photopolymerization reaction between the acrylate groups of PEG and methacrylated-chitosan nanoparticles. The nanoparticle characteristics under physiological pH conditions were optimized through altered PEG chain length, concentration and duration of UV exposure. The method developed here has potential for clinical translation of chitosan nanoparticles. It also allows for the scalable and fast synthesis of nanoparticles with colloidal stability.
  • Thumbnail Image
    PublicationOpen Access
    A promising catalyst for the dehydrogenation of perhydro-dibenzyltoluene: Pt/Al2O3 prepared by supercritical CO2 deposition
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Modisha, Phillimon; Garidzirai, Rudaviro; Rommel, Sarshad; Uzunlar, Erdal; Aindow, Mark; Bessarabov, Dmitri; Department of Chemical and Biological Engineering; Bozbağ, Selmi Erim; Erkey, Can; Güneş, Hande; Researcher; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); College of Engineering; N/A; 29633; N/A
    Pt/Al2O3 catalysts prepared via supercritical deposition (SCD), with supercritical CO2, wet impregnation (WI) methods and a selected benchmark catalyst, were evaluated for the dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) at 300 degrees C in a batch reactor. After ten dehydrogenation runs, the average performance of the catalyst prepared using SCD was the highest compared to the benchmark and WI-prepared catalysts. The pre-treatment of the catalysts with the product (dibenzyltoluene) indicated that the deactivation observed is mainly due to the adsorbed H0-DBT blocking the active sites for the reactant (H18-DBT). Furthermore, the SCD method afforded a catalyst with a higher dispersion of smaller sized Pt particles, thus improving catalytic performance towards the dehydrogenation of H18-DBT. The particle diameters of the SCD- and WI-prepared catalysts varied in the ranges of 0.6-2.2 nm and 0.8-3.4 nm and had average particle sizes of 1.1 nm and 1.7 nm, respectively. Energy dispersive X-ray spectroscopy analysis of the catalysts after ten dehydrogenation runs revealed the presence of carbon. In this study, improved catalyst performance led to the production of more liquid-based by-products and carbon material compared to catalysts with low catalytic performance.