Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 4 of 4
  • Placeholder
    Publication
    B-tensor: brain connectome tensor factorization for Alzheimer's disease
    (Institute of Electrical and Electronics Engineers (IEEE), 2021) Durusoy, Goktekin; Yildirm, Zerrin; Dal, Demet Yuksel; Ulasoglu-Yildiz, Cigdem; Kurt, Elif; Bayir, Gunes; Ozacar, Erhan; Ozarslan, Evren; Demirtas-Tatldede, Asl; Bilgic, Basar; Demiralp, Tamer; Gurvit, Hakan; Acar, Burak; Department of Physics; Kabakçıoğlu, Alkan; Faculty Member; Department of Physics; College of Sciences; 49854
    AD is the highly severe part of the dementia spectrum and impairs cognitive abilities of individuals, bringing economic, societal and psychological burdens beyond the diseased. A promising approach in AD research is the analysis of structural and functional brain connectomes, i.e., sNETs and fNETs, respectively. We propose to use tensor representation (B-tensor) of uni-modal and multi-modal brain connectomes to define a low-dimensional space via tensor factorization. We show on a cohort of 47 subjects, spanning the spectrum of dementia, that diagnosis with an accuracy of 77% to 100% is achievable in a 5D connectome space using different structural and functional connectome constructions in a uni-modal and multi-modal fashion. We further show that multi-modal tensor factorization improves the results suggesting complementary information in structure and function. A neurological assessment of the connectivity patterns identified largely agrees with prior knowledge, yet also suggests new associations that may play a role in the disease progress.
  • Placeholder
    Publication
    Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLR proteins
    (Public Library Science, 2022) Wojciechowski, Jakub W.; Gasior-Glogowska, Marlena; Coustou, Virginie; Szulc, Natalia; Szefczyk, Monika; Kopaczynska, Marta; Saupe, Sven J.; Dyrka, Witold; Tekoğlu, Tahsin Emirhan; PhD Student; Graduate School of Sciences and Engineering; N/A
    NLR proteins are intracellular receptors constituting a conserved component of the innate immune system of cellular organisms. In fungi, NLRs are characterized by high diversity of architectures and presence of amyloid signaling. Here, we explore the diverse world of effector and signaling domains of fungal NLRs using state-of-the-art bioinformatic methods including MMseqs2 for fast clustering, probabilistic context-free grammars for sequence analysis, and AlphaFold2 deep neural networks for structure prediction. In addition to substantially improving the overall annotation, especially in basidiomycetes, the study identifies novel domains and reveals the structural similarity of MLKL-related HeLo- and Goodbye-like domains forming the most abundant superfamily of fungal NLR effectors. Moreover, compared to previous studies, we found several times more amyloid motif instances, including novel families, and validated aggregating and prion-forming properties of the most abundant of them in vitro and in vivo. Also, through an extensive in silico search, the NLR-associated amyloid signaling was identified in basidiomycetes. The emerging picture highlights similarities and differences in the NLR architectures and amyloid signaling in ascomycetes, basidiomycetes and other branches of life.
  • Placeholder
    Publication
    Path2Surv: Pathway/gene set-based survival analysis using multiple kernel learning
    (Oxford University Press (OUP), 2019) N/A; Department of Industrial Engineering; Department of Industrial Engineering; Dereli, Onur; Oğuz, Ceyda; Gönen, Mehmet; PhD Student; Faculty Member; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; 6033; 237468
    Motivation: Survival analysis methods that integrate pathways/gene sets into their learning model could identify molecular mechanisms that determine survival characteristics of patients. Rather than first picking the predictive pathways/gene sets from a given collection and then training a predictive model on the subset of genomic features mapped to these selected pathways/gene sets, we developed a novel machine learning algorithm (Path2Surv) that conjointly performs these two steps using multiple kernel learning. Results: We extensively tested our Path2Surv algorithm on 7655 patients from 20 cancer types using cancer-specific pathway/gene set collections and gene expression profiles of these patients. Path2Surv statistically significantly outperformed survival random forest (RF) on 12 out of 20 datasets and obtained comparable predictive performance against survival support vector machine (SVM) using significantly fewer gene expression features (i.e. less than 10% of what survival RF and survival SVM used).
  • Placeholder
    Publication
    Prediction of allosteric communication pathways in proteins
    (2022) Haliloğlu, Türkan; Hacısüleyman, Aysima; Department of Chemical and Biological Engineering; Erman, Burak; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 179997
    Motivation Allostery in proteins is an essential phenomenon in biological processes. In this article, we present a computational model to predict paths of maximum information transfer between active and allosteric sites. In this information theoretic study, we use mutual information as the measure of information transfer, where transition probability of information from one residue to its contacting neighbors is proportional to the magnitude of mutual information between the two residues. Starting from a given residue and using a Hidden Markov Model, we successively determine the neighboring residues that eventually lead to a path of optimum information transfer. The Gaussian approximation of mutual information between residue pairs is adopted. The limits of validity of this approximation are discussed in terms of a nonlinear theory of mutual information and its reduction to the Gaussian form. Results Predictions of the model are tested on six widely studied cases, CheY Bacterial Chemotaxis, B-cell Lymphoma extra-large (Bcl-xL), Human proline isomerase cyclophilin A (CypA), Dihydrofolate reductase (DHFR), HRas GTPase and Caspase-1. The communication transmission rendering the propagation of local fluctuations from the active sites throughout the structure in multiple paths correlate well with the known experimental data. Distinct paths originating from the active site may likely represent a multi functionality such as involving more than one allosteric site and/or pre-existence of some other functional states. Our model is computationally fast and simple and can give allosteric communication pathways, which are crucial for the understanding and control of protein functionality. Supplementary information are available at Bioinformatics online.