Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 26
  • Thumbnail Image
    PublicationOpen Access
    3D printing of elastomeric bioinspired complex adhesive microstructures
    (Wiley, 2021) Dayan, Cem Balda; Chun, Sungwoo; Krishna Subbaiah, Nagaraj; Drotlef, Dirk Michael; Akolpoğlu, Mükrime Birgül; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104
    Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.
  • Placeholder
    Publication
    A comprehensive study on the characteristic spectroscopic features of nitrogen doped graphene
    (Elsevier, 2019) Ogasawara, Hirohito; N/A; N/A; N/A; Department of Chemistry; Solati, Navid; Mobassem, Sonia; Kahraman, Abdullah; Kaya, Sarp; PhD Student; PhD Student; PhD Student; Faculty Member; Department of Chemistry; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; 116541
    Despite significant methodical improvements in the synthesis of N-doped graphene, there are still unsolved questions regarding the control of content and the configuration of nitrogen species in graphene honeycomb network. A cross-examination of X-ray photoelectron spectroscopy and Raman spectroscopy findings indicates that the nitrogen dopant amount is graphene thicknesses dependent, but the various nitrogen dopant coordination can be obtained on both double- and few-layer graphene. Characteristic defect features (D') appearing in Raman spectra upon N-doping is sensitive to nitrogen dopant coordination, graphitic-pyridinic/nitrilic species and therefore the doping level can be identified. Pyridinic and nitrilic nitrogen as primary species turn graphene to p-type semiconductor after a mild thermal treatment.
  • Placeholder
    Publication
    A simple quantitative model of neuromodulation, part i: ion flow neural ion channels
    (Pergamon-Elsevier Science Ltd, 2024) Werneck, Linda; Han, Mertcan; Yildiz, Erdost; Keip, Marc-Andre; Ortiz, Michael; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of Medicine
    We develop a simple model of ionic current through neuronal membranes as a function of membrane potential and extracellular ion concentration. The model combines a simplified Poisson-Nernst-Planck (PNP) model of ion transport through individual ion channels with channel activation functions calibrated from ad hoc in-house experimental data. The simplified PNP model is validated against bacterial gramicidin A ion channel data. The calibrated model accounts for the transport of calcium, sodium, potassium, and chloride and exhibits remarkable agreement with the experimentally measured current-voltage curves for the differentiated human neural cells.
  • Placeholder
    Publication
    Artificial-goosebump-driven microactuation
    (Nature Portfolio, 2024) Zhang, Mingchao; Pal, Aniket; Lyu, Xianglong; Wu, Yingdan; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of Medicine
    Microactuators provide controllable driving forces for precise positioning, manipulation and operation at the microscale. Development of microactuators using active materials is often hampered by their fabrication complexity and limited motion at small scales. Here we report light-fuelled artificial goosebumps to actuate passive microstructures, inspired by the natural reaction of hair bristling (piloerection) on biological skin. We use light-responsive liquid crystal elastomers as the responsive artificial skin to move three-dimensionally printed passive polymer microstructures. When exposed to a programmable femtosecond laser, the liquid crystal elastomer skin generates localized artificial goosebumps, resulting in precise actuation of the surrounding microstructures. Such microactuation can tilt micro-mirrors for the controlled manipulation of light reflection and disassemble capillary-force-induced self-assembled microstructures globally and locally. We demonstrate the potential application of the proposed microactuation system for information storage. This methodology provides precise, localized and controllable manipulation of microstructures, opening new possibilities for the development of programmable micromachines. Light-induced artificial goosebumps on liquid crystal elastomer skin are used to precisely manipulate passive microstructures, achieving a localized and controllable system for programmable micromachines.
  • Placeholder
    Publication
    Designing covalent organic framework-based light-driven microswimmers toward therapeutic applications
    (Wiley-V C H Verlag Gmbh, 2023) Sridhar, Varun; Yildiz, Erdost; Rodriguez-Camargo, Andres; Lyu, Xianglong; Yao, Liang; Wrede, Paul; Aghakhani, Amirreza; Akolpoglu, Birgul M.; Podjaski, Filip; Lotsch, Bettina V.; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of Medicine
    While micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light-driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP-PDA-COF sub-micrometer particles and texturally nanoporous, micrometer-sized TpAzo-COF particles are described and compared as light-driven microrobots. They can be used as highly efficient visible-light-driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with approximate to 2.6 and approximate to 3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real-time visualization of the drug-loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.
  • Placeholder
    Publication
    Dx2-y2 superconductivity and the Hubbard model
    (Taylor & Francis, 2002) Department of Physics; Bulut, Nejat; Faculty Member; Department of Physics; College of Sciences; 4963
    The numerical studies of d(x2-y2)-wave pairing in the two-dimensional (2D) and the 2-leg Hubbard models are reviewed. For this purpose, the results obtained from the determinantal Quantum Monte Carlo and the Density-Matrix Renormalization-Group calculations are presented. These are calculations which were motivated by the discovery of the high-T-c cuprates. In this review, the emphasis is placed on the microscopic many-body processes which are responsible for the d(x2-y2)-wave pairing correlations observed in the 2D and the 2-leg Hubbard models. In order to gain insight into these processes, the results on the effective pairing interaction as well as the magnetic, density and the single-particle excitations will be reviewed. In addition, comparisons will be made with the other numerical approaches to the Hubbard model and the numerical results on the t-J model. The results reviewed here indicate that an effective pairing interaction which is repulsive at (pi,pi) momentum transfer, and enhanced single-particle spectral weight near the (pi,0) and (0,pi) points of the Brillouin zone, create optimum conditions for d(x2)-(y2)-wave pairing. These are two effects which act to enhance the d(x2-y2)-wave pairing correlations in the Hubbard model. Finding additional ways is an active research problem.
  • Placeholder
    Publication
    Effect of Zn(NO3)(2) concentration in hydrothermal-electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods
    (Elsevier, 2016) N/A; N/A; Department of Chemistry; Akkaya, Ceren Yılmaz; Ünal, Uğur; PhD Student; Faculty Member; Department of Chemistry; N/A; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; 42079
    Zn(NO3)(2) concentration had been reported to be significantly influential on electrodeposition of ZnO structures. In this work, this issue is revisited using hydrothermal-electrochemical deposition (HED). Seedless, cathodic electrochemical deposition of ZnO films is carried out on ITO electrode at 130 degrees C in a closed glass reactor with varying Zn(NO3)(2) concentration. Regardless of the concentration of Zn2+ precursor (0.001-0.1 M) in the deposition solution, vertically aligned 1-D ZnO nanorods are obtained as opposed to electrodepositions at lower temperatures (70-80 degrees C). We also report the effects of high bath temperature and pressure on the photoelectrochemical properties of the ZnO films. Manipulation of precursor concentration in the deposition solution allows adjustment of the aspect ratio of the nanorods and the degree of texturation along the c-axis; hence photoinduced current density. HED is shown to provide a single step synthesis route to prepare ZnO rods with desired aspect ratio specific for the desired application just by controlling the precursor concentration.
  • Placeholder
    Publication
    Efficient synthesis of bifeo3 by the microwave-assisted sol-gel method: "a" site influence on the photoelectrochemical activity of perovskites
    (Elsevier, 2019) Singh, Dheerendra; Tabari, Taymaz; Ebadi, Mehdi; Trochowski, Mateusz; Macyk, Wojciech; N/A; Yağcı, Mustafa Barış; Researcher;  Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A
    BiFeO3 (BF) and LaFeO3 (LF) perovskites were synthesized using a microwave-assisted (MW) and sol-gel (SG) methods. XRD, XPS, TEM, UV-DRS techniques were applied to study physicochemical properties of perovskites. In addition, Incident Photon-to-Current Efficiency (IPCE) measurements, Linear Sweep Voltammetry (LSV) and impedance spectroscopy were used to characterize electrochemical properties of the materials. The band gap energy increases in the following way: BF-MW (2.05 eV), LF-MW (2.18 eV), BF-SG (2.26 eV) and LF-SG (2.54 eV), demonstrating a remarkable influence of the synthesis method on the optical and electronic properties of the materials. Furthermore, XRD showed a significant impact of the synthesis methods on the crystal structure. Perovskites synthesized under MW irradiation showed a pure crystal structure compared to the perovskites prepared by SG method, which contained some admixtures. IPCE shows that LF-MW has a better charge separation ability compared to BF-MW. However, BF-SG showed the highest activity. Temperature programmed reduction tests (TPR) revealed a better ability of BF-MW to adsorb/desorb oxygen, compared to LF-MW. XPS measurements pointed at the presence of Fe4+. Finally, the photocatalytic activity of the perovskites was tested in solar water-splitting as a function of the synthesis method and presence of Bi and La in "A" sites of the ABO(3) perovskites. We postulate, that the Jahn-Teller distortion effect in LF-MW increases its catalytic activity by decreasing the binding energy compared to BF-MW.
  • Placeholder
    Publication
    Enhanced hydrogen evolution by using ternary nanocomposites of mesoporous carbon nitride/black phosphorous/transition metal nanoparticles (m-gcn/bp-m; m = co, ni, and cu) as photocatalysts under visible light: a comparative experimental and theoretical study
    (Elsevier, 2022) Acar, Eminegul Genc; Yanalak, Gizem; Aslan, Emre; Kilic, Murat; Patır, İmren Hatay; N/A; N/A; Department of Chemistry; Yılmaz, Seda; Metin, Önder; PhD Student; Faculty Member; Department of Chemistry; N/A; N/A; College of Sciences; N/A; N/A; 46962
    The effect of first-row transition metal nanoparticles as co-catalysts on the activity of mesoporous graphitic carbon nitride (m-gCN) and black phosphorous (BP) heterojunctions (m-gCN/BP) in the photocatalytic hydrogen evolution reaction (HER) is investigated comparatively. Three m-gCN/BP-M (M: Co, Ni, and Cu) ternary nanocomposites were prepared via wetness impregnation and chemical reduction of metal precursors on as-prepared m-gCN/BP binary heterojunctions. The photocatalytic HER activities of m-gCN, m-gCN/BP, m-gCN/BP-Ni, mgCN/BP-Co, and m-gCN/BP-Cu nanocomposites were determined to be 0.233, 0.330, 0.442, 0.326, and 0.223 mmol g-1 h-1, respectively, under visible light illumination. These results revealed that type of transition metal NPs as co-catalysts have considerable effect on the activity of m-gCN/BP heterojunctions in the photocatalytic HER, among which m-gCN/BP-Ni is the best one. The DFT calculations performed on the nanocomposites revealed that m-gCN/BP-Ni possesses the lowest band gap and the highest visible light absorption resulting in the highest photocatalytic activity in HER.
  • Placeholder
    Publication
    Enhanced hydrogen evolution via in situ generated 2D black phosphorous nanocomposites at the liquid/liquid interfaces
    (Elsevier, 2022) Aslan, Emre; Yanalak, Gizem; Patır, İmren Hatay; Department of Chemistry; Department of Chemistry; Eroğlu, Zafer; Metin, Önder; Researcher; Faculty Member; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Sciences; College of Sciences; N/A; 46962
    The mimicry of bio-membrane with a liquid/liquid interface between two immiscible electrolyte solutions is intrinsically defect-free to study catalysis of energy conversion reactions i.e., CO2 reduction, oxygen reduction, and hydrogen evolution. Herein, we report the in-situ generation of electrodeposited black phosphorous (BP) based nanocomposites at the liquid/liquid interface for the first time and their catalysis in hydrogen evolution reaction (HER). The catalytic HER activities of these catalysts have been investigated electrochemically and also chemically by two-phase reactions. The BP/MoSx, BP/Cu, and BP/Pt nanocomposites were formed by reducing the catalyst precursors such as (NH4)(2)MoS4, (NH4)(2)PtCl4, and CuCl2 salts, respectively on the BP nanosheets by decamethylferrocene (DMFc) electron donor during the catalytic HER. The electrodeposited nanocomposites were collected from the interface and characterized by using advanced analytical techniques. Among them, the BP/MoSx nanocomposites showed the highest HER activity with a reaction rate constant of 0.202 min(-1) was about 230- and 7-times greater than the ones obtained by non-catalytic reaction and the free-MoSx catalyst. Moreover, the nucleation of the catalysts and the HER mechanisms were also explained in detail. The BP/MoSx also showed higher HER activity compared to that of carbon nanotubes CNTMoSx and reduced graphene oxide rGOMoS(x) nanocomposites.