Publication: Enhanced hydrogen evolution by using ternary nanocomposites of mesoporous carbon nitride/black phosphorous/transition metal nanoparticles (m-gcn/bp-m; m = co, ni, and cu) as photocatalysts under visible light: a comparative experimental and theoretical study
Program
KU-Authors
KU Authors
Co-Authors
Acar, Eminegul Genc
Yanalak, Gizem
Aslan, Emre
Kilic, Murat
Patır, İmren Hatay
Advisor
Publication Date
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Abstract
The effect of first-row transition metal nanoparticles as co-catalysts on the activity of mesoporous graphitic carbon nitride (m-gCN) and black phosphorous (BP) heterojunctions (m-gCN/BP) in the photocatalytic hydrogen evolution reaction (HER) is investigated comparatively. Three m-gCN/BP-M (M: Co, Ni, and Cu) ternary nanocomposites were prepared via wetness impregnation and chemical reduction of metal precursors on as-prepared m-gCN/BP binary heterojunctions. The photocatalytic HER activities of m-gCN, m-gCN/BP, m-gCN/BP-Ni, mgCN/BP-Co, and m-gCN/BP-Cu nanocomposites were determined to be 0.233, 0.330, 0.442, 0.326, and 0.223 mmol g-1 h-1, respectively, under visible light illumination. These results revealed that type of transition metal NPs as co-catalysts have considerable effect on the activity of m-gCN/BP heterojunctions in the photocatalytic HER, among which m-gCN/BP-Ni is the best one. The DFT calculations performed on the nanocomposites revealed that m-gCN/BP-Ni possesses the lowest band gap and the highest visible light absorption resulting in the highest photocatalytic activity in HER.
Source:
Applied Surface Science
Publisher:
Elsevier
Keywords:
Subject
Chemistry, physical and theoretical, Materials sciences, Coatings, Physics, Condensed matter