Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 2 of 2
  • Placeholder
    Publication
    Quenching vibrations of cesium dimers by He at low and ultralow temperatures: quantum dynamical calculations
    (Springer, 2011) Caruso, D.; Tacconi, M.; Bovino, S.; Gianturco, F. A.; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    This paper analyses in detail the energy redistribution from the upper vibrational levels of Cs dimers, thought to be obtained from initial recombination processes that generate excited internal states of the triplet configuration (3) I pound (u) (+) . Their quenching is examined as they are made to further collide with (4)He buffer gas at temperatures below and around 100 mK. The relevant cross sections are computed by using a multichannel quantum dynamical approach and employ a full, ab initio potential energy surface. Due to their smallness (see Ref. [R.B. Ross, J.M. Powers, T. Atashroo, W.C. Ermler, I.A. LaJohn, P. Christiansen, J. Chem. Phys. 93, 6654 (1999)]) the fine structure effects have not been explicitly included in this study. The final, cumulative cross-sections are discussed and analyzed in terms of the overall quenching behavior shown by different initial states of the dimer and in terms of the changing ratios between collisional cooling and vibrational quenching cross sections as a function of trap temperature. The corresponding quenching rates are also computed and analysed.
  • Placeholder
    Publication
    Solvation of K+ in helium droplets
    (Springer, 2007) Yıldırım, Erol; Yurtsever, Mine; Bodo, Enrico; Gianturco, Franco A.; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    Solvation of K+ in helium droplets is studied by classical simulation methods. We have previously shown that additive potentials can be used to describe structures of helium droplets when an ionic species is present. Here, we present an accurate ab-initio potential for the K+ - He interaction. Global minima of KHen+ for up to n=70 are searched for employing Basin Hopping Monte Carlo simulations with a random growth scheme. The extent of the solvation is analyzed. A clear formation of two shells with 15 and 23 atoms is detected.