Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 89
  • Thumbnail Image
    PublicationOpen Access
    3D bioprinted organ?on?chips
    (Wiley, 2022) Mustafaoğlu, Nur; Zhang, Yu Shrike; Department of Mechanical Engineering; N/A; N/A; Dabbagh, Sajjad Rahmani; Sarabi, Misagh Rezapour; Birtek, Mehmet Tuğrul; Taşoğlu, Savaş; Faculty Member; Department of Mechanical Engineering; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); College of Engineering; Graduate School of Social Sciences and Humanities; Graduate School of Sciences and Engineering; N/A; N/A; N/A; 291971
    Organ-on-a-chip (OOC) platforms recapitulate human in vivo-like conditions more realistically compared to many animal models and conventional two-dimensional cell cultures. OOC setups benefit from continuous perfusion of cell cultures through microfluidic channels, which promotes cell viability and activities. Moreover, microfluidic chips allow the integration of biosensors for real-time monitoring and analysis of cell interactions and responses to administered drugs. Three-dimensional (3D) bioprinting enables the fabrication of multicell OOC platforms with sophisticated 3D structures that more closely mimic human tissues. 3D-bioprinted OOC platforms are promising tools for understanding the functions of organs, disruptive influences of diseases on organ functionality, and screening the efficacy as well as toxicity of drugs on organs. Here, common 3D bioprinting techniques, advantages, and limitations of each method are reviewed. Additionally, recent advances, applications, and potentials of 3D-bioprinted OOC platforms for emulating various human organs are presented. Last, current challenges and future perspectives of OOC platforms are discussed.
  • Placeholder
    Publication
    3D coffee stains
    (Royal Soc Chemistry, 2017) N/A; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Department of Molecular Biology and Genetics; Department of Chemistry; Department of Chemistry; Department of Electrical and Electronics Engineering; Doğru-Yüksel, Itır Bakış; Söz, Çağla Koşak; Press, Daniel Aaron; Melikov, Rustamzhon; Begar, Efe; Çonkar, Deniz; Karalar, Elif Nur Fırat; Yılgör, Emel; Yılgör, İskender; Nizamoğlu, Sedat; PhD Student; PhD Student; Researcher; PhD Student; PhD Student; PhD Student; PhD Student; Faculty Member; Researcher; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Department of Chemistry; Department of Electrical and Electronics Engineering; N/A; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A; N/A; N/A; N/A; N/A; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; 206349; N/A; 24181; 130295
    When a liquid droplet (e.g., coffee, wine, etc.) is splattered on a surface, the droplet dries in a ring-shaped stain. This widely observed pattern in everyday life occurs due to the phenomenon known as a coffee stain (or coffee ring) effect. While the droplet dries, the capillary flow moves and deposits the particles toward the pinned edges, which shows a 2D ring-like structure. Here we demonstrate the transition from a 2D to a 3D coffee stain that has a well-defined and hollow sphere-like structure, when the substrate surface is switched from hydrophilic to superhydrophobic. The 3D stain formation starts with the evaporation of the pinned aqueous colloidal droplet placed on a superhydrophobic surface that facilitates the particle flow towards the liquid-air interface. This leads to spherical skin formation and a cavity in the droplet. Afterwards the water loss in the cavity due to pervaporation leads to bubble nucleation and growth, until complete evaporation of the solvent. In addition to the superhydrophobicity of the surface, the concentration of the solution also has a significant effect on 3D coffee stain formation. Advantageously, 3D coffee stain formation in a pendant droplet configuration enables the construction of all-protein lasers by integrating silk fibroin with fluorescent proteins. No tools, components and/or human intervention are needed after the construction process is initiated; therefore, 3D coffee-stains hold promise for building self-assembled and functional 3D constructs and devices from colloidal solutions.
  • Thumbnail Image
    PublicationOpen Access
    3D engineered neural co-culture model and neurovascular effects of marine fungi-derived citreohybridonol
    (American Institute of Physics (AIP) Publishing, 2022) Polat, İrem; Özkaya, Ferhat Can; El-Neketi, Mona; Ebrahim, Weaam; Şengül, Gülgün; Department of Mechanical Engineering; Sokullu, Emel; Sarabi, Misagh Rezapour; Taşoğlu, Savaş; Faculty Member; Faculty Member; Department of Mechanical Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); School of Medicine; Graduate School of Sciences and Engineering; College of Engineering; 163024; N/A; 291971
    Marine-based biomolecules are emerging metabolites that have gained attention for developing novel biomaterials, drugs, and pharmaceutical in vitro platforms. Here, we developed a 3D engineered neural co-culture model via a 3D prototyped sliding frame-platform for multi-step UV lithography and investigated the neurovascular potential of citreohybridonol in neuroblastoma treatment. Citreohybridonol was isolated from a sponge-derived fungus Penicillium atrovenetum. The model was characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy analysis. Human umbilical cord vein endothelial cells (HUVECs) and neuroblastoma (SH-SY5Y) cell lines were encapsulated in gelatin methacrylate (GelMA) with and without citreohybridonol. The effect of citreohybridonol on the proliferation capacity of cells was assessed via cell viability and immunostaining assays. GelMA and 3D culture characterization indicated that the cells were successfully encapsulated as axenic and mixed with/without citreohybridonol. The cytotoxic test confirmed that the 3D microenvironment was non-toxic for cultural experiments, and it showed the inhibitory effects of citreohybridonol on SH-SY5Y cells and induced the proliferation of HUVECs. Finally, immunohistochemical staining demonstrated that citreohybridonol suppressed SH-SY5Y cells and induced vascularization of HUVECs in mixed 3D cell culture.
  • Placeholder
    Publication
    [BMIM] [PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance
    (Amer Chemical Soc, 2016) N/A; N/A; N/A; N/A; N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Kınık, Fatma Pelin; Altıntaş, Çiğdem; Balcı, Volkan; Koyutürk, Burak; Uzun, Alper; Keskin, Seda; Master Student; Researcher; PhD Student; Master Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; 59917; 40548
    Experiments were combined with atomically detailed simulations and density functional theory (DFT) calculations to understand the effect of incorporation of an ionic liquid (IL), 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), into a metal organic framework (MOF with a zeolitic imidazolate framework), ZIF-8, on the CO2 separation performance. The interactions between [BMIM] [PF6] and ZIF-8 were examined in deep detail, and their consequences on CO2/CH4, CO2/N-2, and CH4/N-2 separation have been elucidated by using experimental measurements complemented by DFT calculations and atomically detailed simulations. Results suggest that IL-MOF interactions strongly affect the gas affinity of materials at low pressure, whereas available pore volume plays a key role for gas adsorption at high pressures. Direct interactions between IL and MOF lead to at least a doubling of CO2/CH4 and CO2/N-2 selectivities of ZIF-8. These results provide opportunities for rational design and development of IL-incorporated MOFs with exceptional selectivity for target gas separation applications.
  • Thumbnail Image
    PublicationOpen Access
    A comparative study on GaSb epilayers grown on nominal and vicinal Si(100) substrates by molecular beam epitaxy
    (Institute of Physics (IOP) Publishing, 2020) Arpapay, Burcu; Suyolcu, Y. Eren; van Aken, Peter A.; Gülgün, Mehmet Ali; Serincan, Uğur; Çorapçıoğlu, Gülcan; n2STAR-Koç University Nanofabrication and Nanocharacterization Center for Scientifc and Technological Advanced Research
    The direct growth of GaSb buffer layers on Si substrates is attracting considerable interest in the integration of group III-Sb based device structures on lower-cost Si substrates. Here, we present the effect of various growth steps on the defect types and defect density that are crucial for advancing high crystal quality GaSb buffer layer on nominal/vicinal Si substrate. As a growth step, the applied thermal annealing at an intermediate step provided a decrease in the threading dislocation (TD) density down to 1.72 x 10(8) cm(-2), indicating a more effective method compared to post-growth annealing. Additionally, the importance of period number and position of GaSb/AlSb superlattice layers inserted in GaSb epilayers is demonstrated. In the case of the GaSb epilayers grown on vicinal substrates, the APB density as low as 0.06 mu m(-1) and TD density of 1.98 x 10(8) cm(-2) were obtained for the sample grown on 4 degrees miscut Si(100) substrate.
  • Placeholder
    Publication
    A grid of dielectric sensors to monitor mold filling and resin cure in resin transfer molding
    (Elsevier Sci Ltd, 2009) N/A; Department of Mechanical Engineering; Yenilmez, Bekir; Sözer, Murat; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 10357
    A grid of 50 dielectric sensors has been embedded in the walls of a mold to monitor resin transfer molding (RTM). The capacitance of each sensor increased as resin occupied the space between sensor plates, and it decreased with curing. Monitoring data can be used for process control to prevent dry spots and to determine when to de-mold the part. In previous studies, Skordos et al. [Skordos AA, Karkanas PI, Partridge IK. A dielectric sensor for measuring flow in resin transfer molding. Meas Sci Technol 2000; 11:25-31] used a lineal sensor, Hegg et al. [Hegg MC, Ogale A, Mescher A, Mamishev AV, Minaie B. Remote monitoring of resin transfer molding processes by distributed dielectric sensors. J Compos Mater 2005;39(17)] used three large sensors. As experimentally shown in this study, these lineal or large-plate dielectric sensors may mislead since a sensor measures total fraction of the sensor's plate area occupied by resin but not the resin's whereabouts. To avoid ambiguity and yet maintain detailed monitoring, a sensor grid was made at the projections of embedded orthogonal electrodes. The developed sensor operation system eliminated tedious and costly manufacturing of conventionally shielded separate sensors. The success of the developed sensor system was demonstrated in RTM experiments.
  • Placeholder
    Publication
    A microstructure-sensitive model for simulating the impact response of a high-manganese austenitic steel
    (Asme, 2016) N/A; N/A; Department of Mechanical Engineering; Mirzajanzadeh, Morad; Canadinç, Demircan; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 23433
    Microstructurally informed macroscopic impact response of a high-manganese austenitic steel was modeled through incorporation of the viscoplastic self-consistent (VPSC) crystal plasticity model into the ANSYS LS-DYNA nonlinear explicit finite-element (FE) frame. Voce hardening flow rule, capable of modeling plastic anisotropy in microstructures, was utilized in the VPSC crystal plasticity model to predict the micromechanical response of the material, which was calibrated based on experimentally measured quasi-static uniaxial tensile deformation response and initially measured textures. Specifically, hiring calibrated Voce parameters in VPSC, a modified material response was predicted employing local velocity gradient tensors obtained from the initial FE analyses as a new boundary condition for loading state. The updated micromechanical response of the material was then integrated into the macroscale material model by calibrating the Johnson-Cook (JC) constitutive relationship and the corresponding damage parameters. Consequently, we demonstrate the role of geometrically necessary multi-axial stress state for proper modeling of the impact response of polycrystalline metals and validate the presented approach by experimentally and numerically analyzing the deformation response of the Hadfield steel (HS) under impact loading.
  • Thumbnail Image
    PublicationOpen Access
    A narrow-band multi-resonant metamaterial in near-ir
    (Multidisciplinary Digital Publishing Institute (MDPI), 2020) Ali, Farhan; Department of Physics; Ramazanoğlu, Serap Aksu; Faculty Member; Department of Physics; College of Sciences; 243745
    We theoretically investigate a multi-resonant plasmonic metamaterial perfect absorber operating between 600 and 950 nm wavelengths. The presented device generates 100% absorption at two resonance wavelengths and delivers an ultra-narrow band (sub-20 nm) and high quality factor (Q = 44) resonance. The studied perfect absorber is a metal–insulator–metal configuration where a thin MgF2 spacer is sandwiched between an optically thick gold layer and uniformly patterned gold circular nanodisc antennas. The localized and propagating nature of the plasmonic resonances are characterized and confirmed theoretically. The origin of the perfect absorption is investigated using the impedance matching and critical coupling phenomenon. We calculate the effective impedance of the perfect absorber and confirm the matching with the free space impedance. We also investigate the scattering properties of the top antenna layer and confirm the minimized reflection at resonance wavelengths by calculating the absorption and scattering cross sections. The excitation of plasmonic resonances boost the near-field intensity by three orders of magnitude which enhances the interaction between the metamaterial surface and the incident energy. The refractive index sensitivity of the perfect absorber could go as high as S = 500 nm/RIU. The presented optical characteristics make the proposed narrow-band multi-resonant perfect absorber a favorable platform for biosensing and contrast agent based bioimaging.
  • Thumbnail Image
    PublicationOpen Access
    A new class of porous materials for efficient CO2 separation: ionic liquid/graphene aerogel composites
    (Elsevier, 2021) Department of Chemical and Biological Engineering; N/A; Department of Chemistry; Zeeshan, Muhammad; Yalçın, Kaan; Keskin, Seda; Uzun, Alper; Öztuna, Feriha Eylül Saraç; Ünal, Uğur; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Chemistry; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; N/A; N/A; 40548; 59917; N/A; 42079
    Here, we report a new post-synthesis modification strategy for functionalizing reduced graphene aerogels (rGAs) towards an exceptional CO2 separation performance. 1-N-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was impregnated on a rGA, prepared by reducing GA at 700 degrees C, at various ionic liquid (IL) loadings of 5, 10, 30, and 50 wt%. The resulting composites were characterized in deep detail by X-ray photoelectron spectroscopy, X-ray diffraction, N-2 physical adsorption measurements, scanning electron microscopy, Fourier transform infrared and Raman spectroscopies, and thermogravimetric analysis. Results indicated the presence of interactions between the rGA surface and the anion of the IL, potentially improving the CO2 affinity. Volumetric gas adsorption measurements using these materials showed that the deposition of [BMIM][PF6] on rGA surface at an IL loading of 50 wt% boosts the CO2/CH4 selectivity by more than 20-times, exceeding an absolute value of 120, a remarkably higher CO2/CH4 selectivity compared to that of other functionalized materials under similar operating conditions. Tunability of both the IL structure and the surface characteristics of rGA offer a tremendous degree of flexibility for the rational design of these IL/rGA composites towards high performance in gas separation applications.
  • Placeholder
    Publication
    A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers
    (Sage Publications Ltd, 2015) N/A; Department of Mechanical Engineering; Arıdoğan, Mustafa Uğur; Başdoğan, İpek; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 179940
    Structural vibrations are the major causes of noise problems, passenger discomforts, and mechanical failures in aerospace, Automotive, and marine systems, which are mainly composed of lightweight and flexible plate-like structures. in order to reduce structural vibrations and noise radiations of lightweight structures, passive and active treatments have been used and investigated over the last three decades. Our aim of this article is to review current state-of-the-art of active vibration and noise suppression systems for plate and plate-like structures with various kinds of boundary conditions. the reviewed articles use numerical methods and experimental tools to study different aspects of controller architectures. in particular, the focus is placed on the active vibration and noise control systems utilizing piezoelectric patches as sensors and actuators since their popularity in vibration-based applications has increased significantly during the last two decades. We first classify the controllers according to their architectures, then compare their performance in vibration and noise attenuation, and finally provide suggestions for further progress. the categorization of the information regarding the controller strategies and sensor/actuator configurations for different host structures can be used by the controller designers as a starting point for their specific configuration.