Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 15
  • Thumbnail Image
    PublicationOpen Access
    A common genetic variation of melanoma inhibitory activity-2 labels a subtype of pancreatic adenocarcinoma with high endoplasmic reticulum stress levels.
    (Nature Publishing Group (NPG), 2015) Kong, Bo; Wu, Weiwei; Valkovska, Nataliya; Jager, Carsten; Hong, Xin; Nitsche, Ulrich; Friess, Helmut; Esposito, Irene; Kleeff, Joerg; Michalski, Christoph W.; N/A; Erkan, Murat Mert; Faculty Member; School of Medicine; 214689
    HNF1 homeoboxA(HNF1A)-mediated gene expression constitutes an essential component of the secretory pathway in the exocrine pancreas. Melanoma inhibitory activity 2 (MIA2), a protein facilitating protein secretion, is an HNF1A target. Protein secretion is precisely coordinated by the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) system. Here, we demonstrate that HNFA and MIA2 are expressed in a subset of human PDAC tissues and that HNF1A induced MIA2 in vitro. We identified a common germline variant of MIA2 (c.A617G:p.I141M) associated with a secretory defect of the MIA2 protein in PDAC cells. Patients carrying MIA2(I141M) survived longer after tumor resection but the survival benefit was restricted to those patients who received adjuvant chemotherapy. The MIA2(I141M) variant was associated with high expression of ER stress/UPR genes - in particular those of the ERN1/XBP arm - in human PDAC samples. Accordingly, PDAC cell lines expressing the MIA2(I141M) variant expressed high levels of ERN1 and were more sensitive to gemcitabine. These findings define an interaction between the common MIA2(I141M) variant and the ER stress/UPR system and specify a subgroup of PDAC patients who are more likely to benefit from adjuvant chemotherapy.
  • Thumbnail Image
    PublicationOpen Access
    A conserved tetraspanin subfamily promotes Notch signaling in Caenorhabditis elegans and in human cells
    (National Academy of Sciences, 2010) Sulis, M.L.; Ferrando, A.A.; Greenwald, I.; Department of Molecular Biology and Genetics; Dunn, Cory David; Faculty Member; Department of Molecular Biology and Genetics; College of Sciences
    The cytosolic domain of Notch is a membrane-tethered transcription factor. Ligand binding ultimately leads to γ-secretase cleavage within the transmembrane domain, allowing the intracellular domain to translocate to the nucleus and activate target gene transcription. Constitutive Notch signaling has been associated with human cancers such as T cell acute lymphoblastic leukemia (T-ALL). As tetraspanins have been implicated in many different signaling processes, we assessed their potential contribution to Notch signaling. We used a genetic assay in Caenorhabditis elegans to identify TSP-12 as a positive factor for Notch activity in several cellular contexts. Then, using a cell culture system, we showed that two human TSP-12 orthologs, TSPAN33 and TSPAN5, promote Notch activity and are likely to act at the γ-secretase cleavage step. We also acquired evidence for functional redundancy among tetraspanins in both C. elegans and human cells. Selective inhibition of tetraspanins may constitute an anti-NOTCH therapeutic approach to reduce γ-secretase activity.
  • Thumbnail Image
    PublicationOpen Access
    Anti-inflammatory modulation of microglia via CD163-targeted glucocorticoids protects dopaminergic neurons in the 6-OHDA Parkinson's disease model
    (Society for Neuroscience, 2016) Tentillier, Noemie; Etzerodt, Anders; Olesen, Mads N.; Jacobsen, Jan; Bender, Dirk; Moestrup, Soren K.; Romero-Ramos, Marina; Department of Molecular Biology and Genetics; Rızalar, F. Sıla; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering
    Increasing evidence supports a decisive role for inflammation in the neurodegenerative process of Parkinson's disease (PD). The immune response in PD seems to involve, not only microglia, but also other immune cells infiltrated into the brain. Indeed, we observed here the infiltration of macrophages, specifically CD163+ macrophages, into the area of neurodegeneration in the 6-hydroxydopamine (6-OHDA) PD model. Therefore, we investigated the therapeutic potential of the infiltrated CD163+ macrophages to modulate local microglia in the brain to achieve neuroprotection. To do so, we designed liposomes targeted for the CD163 receptor to deliver dexamethasone (Dexa) into the CD163+ macrophages in the 6-OHDA PD model. Our data show that a fraction of the CD163-targeted liposomes were carried into the brain after peripheral intravenous injection. The 6-OHDA-lesioned rats that received repeated intravenous CD163-targeted liposomes with Dexa for 3 weeks exhibited better motor performance than the control groups and had minimal glucocorticoid-driven side effects. Furthermore, these animals showed better survival of dopaminergic neurons in substantia nigra and an increased number of microglia expressing major histocompatibility complex II. Therefore, rats receiving CD163-targeted liposomes with Dexa were partially protected against 6-OHDA-induced dopaminergic neurodegeneration, which correlated with a distinctive microglia response. Altogether, our data support the use of macrophages for the modulation of brain neurodegeneration and specifically highlight the potential of CD163-targeted liposomes as a therapeutic tool in PD.
  • Thumbnail Image
    PublicationOpen Access
    Association between gene polymorphisms in TIM1, TSLP, IL18R1 and childhood asthma in Turkish population
    (e-Century Publishing Corporation, 2014) Mete, Fatih; Özkaya, Emin; Aras, Şükrü; Köksal, Vedat; Etlik, Özdal; Department of Molecular Biology and Genetics; Barış, İbrahim; Teaching Faculty; Department of Molecular Biology and Genetics; College of Sciences; 111629
    Many immunologic and inflammatory mechanisms play a role in asthma etiology. The aim of this study was to investigate the susceptibility of asthma patients in the Turkish population with demonstrating genes for polymorphisms in TIM1, TSLP and IL18R1. All of the genomic DNA samples were isolated from blood samples according to a standard salting-out protocol. DNA samples were stored at -20 degrees C until the genotype analysis was performed. rs3806933 (TSLP -847 C > T) and TIM1 -416G > C were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The rs3806933 (TSLP -847 C > T) was genotyped by PCR using our new primers and HphI restriction enzyme digestion. rs2287033 (IL18R1 c. 1270+150 A > G), rs3213733 (IL18R1 c. 626-196 G > T), and rs3771166 (IL18R1-c. 302+1694 C > T) were genotyped using SYBR green dye based real time PCR assay. Results: The allele frequencies of 5 SNPs in TSLP, TIM-1, and IL18R1 genes were determined in 139 asthmatic patients and 126 healthy controls of in Turkish population. The investigated SNPs are as follows; rs3806933 (TSLP -847 C > T), TIM1 -416G > C, rs2287033 (IL18R1 c. 1270+150 A > G), rs3213733 (IL18R1 c. 626-196 G > T), and rs3771166 (IL18R1-c. 302+1694 C > T). Results suggest that IL18R1 c. 626-196 G > T (rs3213733) and TIM1 -416G > C are significantly associated with asthma in patients in Turkish population. Patients with AA genotypes of rs2287033 (IL18R1 c. 1270+150 A > G), have significantly less total serum IgE levels when compared with patients having GG or GA genotypes (p < 0.012; 381.77 +/- 239.46 vs 557.52 +/- 549.96, respectively). Conclusion: This study showed that IL18R1 c. 626 -196 G > T (rs3213733) and TIM1 -416G > C are significantly associated with asthma patients in Turkish population.
  • Thumbnail Image
    PublicationRestricted
    Characterization of the single nucleotide polymorphisms that effect repression activity and stability of cryptochrome2
    (Koç University, 2021) Çamur, Bilge Bahar; Kavaklı, İbrahim Halil; 0000-0001-6624-3505; Koç University Graduate School of Sciences and Engineering; Molecular Biology and Genetics; 40319
  • Thumbnail Image
    PublicationRestricted
    Characterization of the SPOC regulatory function of Bud14
    (Koç University, 2021) Karabürk, Hüseyin; Çaydaşı, Ayşe Koca; 0000-0003-2570-1367; Koç University Graduate School of Sciences and Engineering; Molecular Biology and Genetics; 252978
  • Thumbnail Image
    PublicationOpen Access
    De novo mutations in Plxnd1 and Rev3l cause mobius syndrome
    (Nature Publishing Group (NPG), 2015) Tomas-Roca, Laura; Tsaalbi-Shtylik, Anastasia; Jansen, Jacob G.; Singh, Manvendra K.; Epstein, Jonathan A.; Altunoglu, Umut; Verzijl, Harriette; Soria, Laura; van Beusekom, Ellen; Roscioli, Tony; Iqbal, Zafar; Gilissen, Christian; Hoischen, Alexander; de Brouwer,Arjan P. M.; Erasmus, Corrie; Schubert, Dirk; Brunner, Han; Aytes, Antonio Perez; Marin, Faustino; Aroca, Pilar; Carta, Arturo; de Wind, Niels; Padberg, George W.; van Bokhoven, Hans; N/A; Kayserili, Hülya; Other; School of Medicine; 7945
    Mobius syndrome (MBS) is a neurological disorder that is characterized by paralysis of the facial nerves and variable other congenital anomalies. The aetiology of this syndrome has been enigmatic since the initial descriptions by von Graefe in 1880 and by Mobius in 1888, and it has been debated for decades whether MBS has a genetic or a non-genetic aetiology. Here, we report de novo mutations affecting two genes, PLXND1 and REV3L in MBS patients. PLXND1 and REV3L represent totally unrelated pathways involved in hindbrain development: neural migration and DNA translesion synthesis, essential for the replication of endogenously damaged DNA, respectively. Interestingly, analysis of Plxnd1 and Rev3l mutant mice shows that disruption of these separate pathways converge at the facial branchiomotor nucleus, affecting either motoneuron migration or proliferation. The finding that PLXND1 and REV3L mutations are responsible for a proportion of MBS patients suggests that de novo mutations in other genes might account for other MBS patients.
  • Thumbnail Image
    PublicationOpen Access
    Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae
    (National Academy of Sciences, 2014) Department of Molecular Biology and Genetics; Garipler, Görkem; Mutlu, Nebibe; Lack, Nathan Alan; Dunn, Cory David; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; School of Medicine; Graduate School of Sciences and Engineering; N/A; N/A; 120842; N/A
    Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved alpha 4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
  • Thumbnail Image
    PublicationOpen Access
    Mitochondrial dysfunction plus high-sugar diet provokes a metabolic crisis that inhibits growth
    (Public Library of Science, 2016) Kemppainen, Esko; George, Jack; Garipler, Görkem; Tuomela, Tea; Kiviranta, Essi; Soga, Tomoyoshi; Jacobs, Howard T.; Department of Molecular Biology and Genetics; Dunn, Cory David; Faculty Member; Department of Molecular Biology and Genetics; College of Sciences
    The Drosophila mutant tko(25t) exhibits a deficiency ofmitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced bymechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko(25t) larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.
  • Thumbnail Image
    PublicationOpen Access
    Proteomic analysis of mammalian sperm cells identifies new components of the centrosome
    (The Company of Biologists (United Kingdom), 2014) Sante, Joshua; Elliott, Sarah; Stearns, Tim; Department of Molecular Biology and Genetics; Karalar, Elif Nur Fırat; Faculty Member; Department of Molecular Biology and Genetics; College of Sciences; 206349