Researcher:
Gül, Zeynep Melis

Loading...
Profile Picture
ORCID

Job Title

Master Student

First Name

Zeynep Melis

Last Name

Gül

Name

Name Variants

Gül, Zeynep Melis

Email Address

Birth Date

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    PublicationOpen Access
    Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice
    (Nature Portfolio, 2022) Akyel, Yasemin Kübra; Korkmaz, Tuba; Selvi, Saba; Danış, İbrahim; İpek, Özgecan Savluğ; Aygenli, Fatih; Öztürk, Nuri; Öztürk, Narin; Ünal, Durişehvar Özer; Güzel, Mustafa; Okyar, Alper; N/A; Department of Chemical and Biological Engineering; Department of Industrial Engineering; Gül, Şeref; Gül, Zeynep Melis; Işın, Şafak; Özcan, Onur; Akarlar, Büşra; Taşkın, Ali Cihan; Türkay, Metin; Kavaklı, İbrahim Halil; Researcher; Other; Faculty Member; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Industrial Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Engineering; N/A; N/A; N/A; N/A; N/A; 291296; 105301; 24956; 40319
    Cryptochromes are negative transcriptional regulators of the circadian clock in mammals. It is not clear how reducing the level of endogenous CRY1 in mammals will affect circadian rhythm and the relation of such a decrease with apoptosis. Here, we discovered a molecule (M47) that destabilizes Cryptochrome 1 (CRY1) both in vitro and in vivo. The M47 selectively enhanced the degradation rate of CRY1 by increasing its ubiquitination and resulted in increasing the circadian period length of U2OS Bmal1-dLuc cells. In addition, subcellular fractionation studies from mice liver indicated that M47 increased degradation of the CRY1 in the nucleus. Furthermore, M47-mediated CRY1 reduction enhanced oxaliplatin-induced apoptosis in Ras-transformed p53 null fibroblast cells. Systemic repetitive administration of M47 increased the median lifespan of p53(-/-) mice by similar to 25%. Collectively our data suggest that M47 is a promising molecule to treat forms of cancer depending on the p53 mutation.