Researcher: Cebeci, Selman
Name Variants
Cebeci, Selman
Email Address
Birth Date
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Repetitive control of an XYZ piezo-stage for faster nano-scanning: numerical simulations and experiments(Pergamon-Elsevier Science Ltd, 2011) Necipoğlu, Serkan; Güvenç, Levent; N/A; Department of Mechanical Engineering; N/A; Cebeci, Selman; Başdoğan, Çağatay; Has, Yunus Emre; Master Student; Faculty Member; Master Student; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; N/A; 125489; N/AA repetitive controller (RC) is implemented to control the Z-axis movements of a piezo-scanner used for AFM scanning and then tested through scan experiments and numerical simulations. The experimental and simulation results show that the RC compensates phase delays better than the standard PI controller at high scan speeds, which leads to less scan error and lower interaction forces between the scanning probe and the surface being scanned. Since the AFM experiments are not perfectly repeatable in the physical world, the optimum phase compensators of the RC resulting this performance are determined through the numerical simulations performed in MATLAB/Simulink. Furthermore, the numerical simulations are also performed to show that the proposed RC is robust and does not require re-tuning of these compensators when the consecutive scan lines are not similar and a change occurs in the probe characteristics. (C) 2011 Elsevier Ltd. All rights reserved.Publication Metadata only Robust repetitive controller for fast AFM imaging(2011) Necipoğlu, Serkan; Güvenç, Levent; N/A; N/A; Department of Mechanical Engineering; Cebeci, Selman; Has, Yunus Emre; Başdoğan, Çağatay; Master Student; Master Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 125489Currently, atomic force microscopy (AFM) is the most preferred scanning probe microscopy method due to its numerous advantages. However, increasing the scanning speed and reducing the interaction forces between the probe's tip and the sample surface are still the two main challenges in AFM. To meet these challenges, we take advantage of the fact that the lateral movements performed during an AFM scan are a repetitive motion and propose a repetitive controller (RC) for the z-axis movements of the piezoscanner. The RC utilizes the profile of the previous scan line while scanning the current line to achieve a better scan performance. The results of the scanning experiments performed with our AFM setup show that the proposed RC significantly outperforms a conventional PI controller that is typically used for the same task. The scan error and the average tapping forces are reduced by 66% and 58%, respectively, when the scanning speed is increased by sevenfold.