Researcher:
Sheikhsarmast, Reza Mokhtarpoor

Loading...
Profile Picture
ORCID

Job Title

PhD Student

First Name

Reza Mokhtarpoor

Last Name

Sheikhsarmast

Name

Name Variants

Sheikhsarmast, Reza Mokhtarpoor

Email Address

Birth Date

Search Results

Now showing 1 - 2 of 2
  • Placeholder
    Publication
    A new robust consistent hybrid finite-volume/particle method for solving the PDF model equations of turbulent reactive flows
    (Pergamon-Elsevier Science Ltd, 2014) Department of Mechanical Engineering; Sheikhsarmast, Reza Mokhtarpoor; Türkeri, Hasret; Muradoğlu, Metin; PhD Student; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 46561
    A new robust hybrid finite-volume (FV)/particle method is developed for solving joint probability density function (JPDF) model equations of statistically stationary turbulent reacting flows. The method is designed to remedy the deficiencies of the hybrid algorithm developed by Muradoglu et al. (1999, 2001). The density-based FV solver in the original hybrid algorithm has been found to be excessively dissipative and yet not very robust. To remedy these deficiencies, a pressure-based PISO algorithm in the open source FV package, OpenFOAM, is used to solve the Favre-averaged mean mass and momentum equations while a particle-based Monte Carlo algorithm is employed to solve the fluctuating velocity-turbulence frequency-compositions JPDF transport equation. The mean density is computed as a particle field and passed to the FV method. Thus the redundancy of the density fields in the original hybrid method is removed making the new hybrid algorithm more consistent at the numerical solution level. The new hybrid algorithm is first applied to simulate non-swirling cold and reacting bluff-body flows. The convergence of the method is demonstrated. In contrast with the original hybrid method, the new hybrid algorithm is very robust with respect to grid refinement and achieves grid convergence without any unphysical vortex shedding in the cold bluff-body flow case. In addition, the results are found to be in good agreement with the earlier PDF calculations and also with the available experimental data. Finally the new hybrid algorithm is successfully applied to simulate the more complicated Sydney swirling bluff-body flame 'SM1'. The method is also very robust for this difficult test case and the results are in good agreement with the available experimental data. In all the cases, the PISO-FV solver is found to be highly resilient to the noise in the mean density field extracted from the particles.
  • Thumbnail Image
    PublicationOpen Access
    A new consistent hybrid algorithm for solution of the PDF equations of turbulent reactive flow
    (American Institute of Physics (AIP) Publishing, 2013) Department of Mechanical Engineering; Sheikhsarmast, Reza Mokhtarpoor; Inmas, Shabrina Virta; Muradoğlu, Metin; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 46561
    This paper presents a newly developed consistent hybrid finite-volume (FV)/particle algorithm for solution of joint PDF (JPDF) model equation of turbulent reacting flows. In this approach, the open source FV package of OpenFOAM is employed to solve the Favre-averaged mean mass and momentum equations using pressure-based PISO algorithm while a particle-based Monte Carlo algorithm is used to solve the fluctuating velocity-turbulence frequency-compositions JPDF transport equation. In the earlier hybrid method [2, 3], a density-based FV algorithm was used to solve the mean flow equations but it has been found to be too dissipative and yet not very robust for incompressible or nearly incompressible flows mainly due to stiffness of the compressible flow equations in the low Mach number limit. In the this work, the density-based FV algorithm is first replaced with a pressure-based PISO algorithm to tackle this problem and then applied for simulation of the Sydney swirl stabilized bluff-body flame SM1. All the equations solved by the FV and particle algorithms are directly derived from the modeled JPDF transport equation so the present method is completely consistent at the level of governing equations. The position and velocity correction algorithms [3] are used to enforce full constancy at the numerical solution level. The results are found to be in a good agreement with the available experimental data and the recent computational results of De Meester et al. [1].