Researcher: Güney, Fatma
Name Variants
Güney, Fatma
Email Address
Birth Date
4 results
Search Results
Now showing 1 - 4 of 4
Publication Metadata only Computer vision for autonomous vehicles(Now Publishers Inc, 2020) Janai, Joel; Behl, Aseem; Geiger, Andreas; Department of Computer Engineering; Güney, Fatma; Faculty Member; Department of Computer Engineering; College of Engineering; 187939Recent years have witnessed enormous progress in AI-related fields such as computer vision, machine learning, and autonomous vehicles. As with any rapidly growing field, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several survey papers on particular sub-problems have appeared, no comprehensive survey on problems, datasets, and methods in computer vision for autonomous vehicles has been published. This monograph attempts to narrow this gap by providing a survey on the state-of-the-art datasets and techniques. Our survey includes both the historically most relevant literature as well as the current state of the art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding, and end-to-end learning for autonomous driving. Towards this goal, we analyze the performance of the state of the art on several challenging benchmarking datasets, including KITTI, MOT, and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we also provide a website that allows navigating topics as well as methods and provides additional information.Publication Metadata only Stretchbev: stretching future instance prediction spatially and temporally(Springer International Publishing Ag, 2022) N/A; Department of Computer Engineering; Akan, Adil Kaan; Güney, Fatma; PhD Student; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 187939In self-driving, predicting future in terms of location and motion of all the agents around the vehicle is a crucial requirement for planning. Recently, a new joint formulation of perception and prediction has emerged by fusing rich sensory information perceived from multiple cameras into a compact bird's-eye view representation to perform prediction. However, the quality of future predictions degrades over time while extending to longer time horizons due to multiple plausible predictions. In this work, we address this inherent uncertainty in future predictions with a stochastic temporal model. Our model learns temporal dynamics in a latent space through stochastic residual updates at each time step. By sampling from a learned distribution at each time step, we obtain more diverse future predictions that are also more accurate compared to previous work, especially stretching both spatially further regions in the scene and temporally over longer time horizons. Despite separate processing of each time step, our model is still efficient through decoupling of the learning of dynamics and the generation of future predictions.Publication Open Access Self-supervised monocular scene decomposition and depth estimation(IEEE Computer Society, 2021) Department of Computer Engineering; N/A; Güney, Fatma; Safadoust, Sadra; Department of Computer Engineering; Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); College of Engineering; Graduate School of Sciences and Engineering; 187939; N/ASelf-supervised monocular depth estimation approaches either ignore independently moving objects in the scene or need a separate segmentation step to identify them. We propose MonoDepthSeg to jointly estimate depth and segment moving objects from monocular video without using any ground-truth labels. We decompose the scene into a fixed number of components where each component corresponds to a region on the image with its own transformation matrix representing its motion. We estimate both the mask and the motion of each component efficiently with a shared encoder. We evaluate our method on three driving datasets and show that our model clearly improves depth estimation while decomposing the scene into separately moving components.Publication Open Access SLAMP: stochastic latent appearance and motion prediction(Institute of Electrical and Electronics Engineers (IEEE), 2021) Erdem, Erkut; Department of Computer Engineering; Erdem, Aykut; Güney, Fatma; Akan, Adil Kaan; Faculty Member; Department of Computer Engineering; Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); College of Engineering; Graduate School of Sciences and Engineering; 20331; 187939; N/AMotion is an important cue for video prediction and often utilized by separating video content into static and dynamic components. Most of the previous work utilizing motion is deterministic but there are stochastic methods that can model the inherent uncertainty of the future. Existing stochastic models either do not reason about motion explicitly or make limiting assumptions about the static part. In this paper, we reason about appearance and motion in the video stochastically by predicting the future based on the motion history. Explicit reasoning about motion without history already reaches the performance of current stochastic models. The motion history further improves the results by allowing to predict consistent dynamics several frames into the future. Our model performs comparably to the state-of-the-art models on the generic video prediction datasets, however, significantly outperforms them on two challenging real-world autonomous driving datasets with complex motion and dynamic background.